Immunology


Categories

Protocols in Current Issue
Protocols in Past Issues
0 Q&A 638 Views Sep 20, 2023

During life, the embryonic alveolar macrophage (AM) population undergoes successive waves of depletion and replenishment in response to infectious and inflammatory episodes. While resident AMs are traditionally described as from embryonic origin, their ontogeny following inflammation or infection is much more complex. Indeed, it appears that the contribution of monocytes (MOs) to the AM pool is variable and depends on the type of inflammation, its severity, and the signals released in the microenvironment of the pulmonary niche (peripheral imprinting) and/or in the bone marrow (central imprinting). Deciphering the cellular and molecular mechanisms regulating the differentiation of MOs into AMs remains an area of intense investigation, as this could potentially explain part of the inter-individual susceptibility to respiratory immunopathologies. Here, we detail a relevant ex vivo co-culture model to investigate how lung epithelial cells (ECs) and group 2 lung innate lymphoid cells (ILC2s) contribute to the differentiation of recruited MOs into AMs. Interestingly, the presence of lung ILC2s and ECs provides the necessary niche signals to ensure the differentiation of bone marrow MOs into AMs, thus establishing an accessible model to study the underlying mechanisms following different infection or inflammation processes.


Key features

• Ex vivo co-culture model of the alveolar niche.

• Deciphering the particular niche signals underlying the differentiation of MO into AMs and their functional polarization.


Graphical overview
This protocol described the isolation of bone marrow monocytes (MOs), lung epithelial cells (ECs), and lung group 2 lung innate lymphoid cells (ILC2s) and the ex vivo co-culture of these cells to drive the differentiation of bone marrow MOs into alveolar macrophages (AMs).




This co-culture experiment is composed of three steps (Graphical overview):
1. Identification and FACS-sorting of ECs and MOs isolated from the lung and the bone marrow of naive mice, respectively.
2. Culture of these ECs and bone marrow MOs for three days.
3. Addition of ILC2s isolated from the lung of naïve mice or mice subjected to a treatment/infection of interest.

0 Q&A 842 Views Dec 5, 2022

Macrophages are a heterogeneous class of innate immune cells that offer a primary line of defense to the body by phagocytizing pathogens, digesting them, and presenting the antigens to T and B cells to initiate adaptive immunity. Through specialized pro-inflammatory or anti-inflammatory activities, macrophages also directly contribute to the clearance of infections and the repair of tissue injury. Macrophages are distributed throughout the body and largely carry out tissue-specific functions. In skeletal muscle, macrophages regulate tissue repair and regeneration; however, the characteristics of these macrophages are not yet fully understood, and their involvement in skeletal muscle aging remains to be elucidated. To investigate these functions, it is critical to efficiently isolate macrophages from skeletal muscle with sufficient purity and yield for various downstream analyses. However, methods to prepare enriched skeletal muscle macrophages are scarce. Here, we describe in detail an optimized method to isolate skeletal muscle macrophages from mice. This method has allowed the isolation of CD45+/CD11b+ macrophage-enriched cells from young and old mice, which can be further used for flow cytometric analysis, fluorescence-activated cell sorting (FACS), and single-cell RNA sequencing.

0 Q&A 2613 Views Jul 5, 2021

Phlebotomine vectors, sand flies of the order Diptera, are known to transmit Leishmania parasites as well as RNA viruses (arboviruses) to humans. The arbovirus, Icoaraci Phlebovirus (BeAN 24262 - ICOV), used in this study was isolated from Nectomys rodents, a mammalian species that is the same natural sylvatic reservoir of Leishmania (Leishmania) amazonensis. This Leishmania species is distributed in primary and secondary forests in Brazil and other countries in America and causes localized and diffuse anergic skin lesions. In our recent studies, we observed an aggravation of the protozoan infection by ICOV through the modulation of cytokine expression, such as IL-10 and IFN-β, enhancing the parasite load and possibly the pathogenesis. Efficient viral production and quantitation had to be developed and standardized to ensure that immuno-molecular assays provide consistent and reproducible viral infection results. The standardization of these procedures becomes a particularly useful tool in research, with several applications in understanding the interaction between the host cell and Phlebovirus, as well as co-infections, allowing the study of intracellular signaling pathways. Here, we detail a protocol that allows the production and quantitation of the Icoaraci Phlebovirus using BHK-21 cells (baby hamster kidney cells) and subsequent infection of peritoneal macrophages from C57BL/6 mice.

1 Q&A 6589 Views Jul 20, 2020
Macrophages are highly plastic immune cells that are capable of adopting a wide array of functional phenotypes in response to environmental stimuli. The changes in macrophage function are often supported and regulated by changes in cellular metabolism. Capturing a comprehensive picture of metabolism is vital for understanding the role of metabolic rewiring in the immune response. Here we present a method for systematically quantifying the abundance of metabolites and lipids in primary murine bone marrow derived macrophages (BMDMs). This method simultaneously extracts polar metabolites and lipids from BMDMs using a rapid two-phase extraction procedure. The polar metabolite fraction and lipid fraction are subsequently analyzed by separate liquid chromatography-mass spectrometry (LC-MS) methods for optimized coverage and quantification. This allows for a comprehensive characterization of cellular metabolism that can be used to understand the impact of a variety of environmental stimuli on macrophage metabolism and function.
0 Q&A 4921 Views Dec 20, 2019
Clearance of apoptotic cells by macrophages is critical to ensuring cellular homeostasis and suppression of autoimmunity. Macrophage recognition of apoptotic cells triggers an anti-inflammatory response, which is mediated by the release of IL-10, TGF-β etc. with concurrent inhibition of pro-inflammatory cytokines (such as TNFα, IL-12, IL-1β). To characterize cytokine profile produced by macrophages during phagocytosis of apoptotic cells, we developed an effective, more physiologic system using isolated murine peritoneal macrophages and T-lymphocyte cell line Jurkat as a source of apoptotic cells. Apoptosis of Jurkat cells is induced with staurosporine, a protein kinase C (PKC) inhibitor and detected by Annexin V/propidium iodide staining. This in vitro assay demonstrates that murine peritoneal macrophages produce large amounts of IL-10 following exposure to apoptotic Jurkat cells.
0 Q&A 11828 Views Jul 20, 2019
Alveolar macrophages (AM) are tissue-resident macrophages that colonize the lung around birth and can self-maintain long-term in an adult organism without contribution of monocytes. AM are located in the pulmonary alveoli and can be harvested by washing the lungs using the method of bronchoalveolar lavage (BAL). Here, we compared different conditions of BAL to obtain high yields of murine AM for in vitro culture and expansion of AM. In addition, we describe specific culture conditions, under which AM proliferate long-term in liquid culture in the presence of granulocyte-macrophage colony-stimulating factor. This method can be used to obtain large numbers of AM for in vivo transplantation or for in vitro experiments with primary mouse macrophages.
0 Q&A 6548 Views Sep 5, 2018
Using gas chromatography mass spectrometry (GC-MS) to analyze the citric acid cycle (CAC) and related intermediates (such as glutamate, glutamine, GABA, and aspartate) is an analytical approach to identify unexpected correlations between apparently related and unrelated pathways of energy metabolism. Intermediates can be as expressed as their absolute concentrations or relative ratios by using known amounts of added reference standards to the sample. GC-MS can also distinguish between heavy labeled molecules (2H- or 13C-labeled) and the naturally occurring most abundant molecules. Applications using tracers can also assess the turnover of specific metabolic pools under various physiological and pathological conditions as well as for pathway discovery.

The following protocol is a relatively simple method that is not only sensitive for small concentrations of metabolic intermediates but can also be used in vivo or in vitro to determine the integrity of various metabolic pathways, such as flux changes within specific metabolite pools. We used this protocol to determine the role of phosphoenolpyruvate carboxykinase 1 (Pck1) gene in mouse macrophage cells to determine the percent contribution from a precursor of 13C labeled glucose into specific CAC metabolite pools.
0 Q&A 7052 Views Sep 20, 2017
In myocardial infarction (MI), a plenty of cardiomyocytes undergo necrosis and necroptosis due to the lack of oxygen and nutrients. The dead cardiomyocytes are promptly engulfed by phagocytes. When the dead cells are not engulfed, the noxious contents of the cells are released outside, and thus, induce inflammation, and obstruct the function of organs. Therefore, phagocytosis is crucial for maintaining homeostasis of organs. Herein, we describe a protocol of an in vitro phagocytosis assay of necroptotic cells.
0 Q&A 9223 Views Sep 20, 2017
In myocardial infarction (MI), a number of cardiomyocytes undergo apoptosis. These apoptotic cardiomyocytes are promptly engulfed by phagocytes. If the dead cells are not engulfed, their noxious contents are released outside, resulting in induction of inflammation. Therefore, the removal of these dead cells is necessary. However, the contribution of each phagocyte type to the removal of apoptotic cells in infarcted hearts remains unresolved. Here, we describe an in vitro protocol for a phagocytosis assay to compare the engulfment ability of cardiac macrophages and cardiac myofibroblasts.
0 Q&A 18801 Views Feb 20, 2015
Inflammatory lung diseases induce strong leukocyte recruitment into the organ, culminating in pneumonia area formation. Here, we describe the protocol for isolation of lung infiltrating cells. Using this assay, we analyzed the lung cell phenotyping by flow cytometry and spontaneous cytokine production by cultivating lung cells ex vivo (Amaral et al., 2014).



We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.