Developmental Biology


Categories

Protocols in Current Issue
Protocols in Past Issues
0 Q&A 1048 Views Jul 20, 2023

Embryonic development is a complex process integrating cell fate decisions and morphogenesis in a spatiotemporally controlled manner. Previous studies with model organisms laid the foundation of our knowledge on post-implantation development; however, studying mammalian embryos at this stage is a difficult and laborious process. Early attempts to recapitulate mammalian development in vitro begun with embryoid bodies (EBs), in which aggregates of mouse embryonic stem cells (mESCs) were shown to differentiate into spatially arranged germ layers. A more revised version of EBs, gastruloids, improved the germ layer differentiation efficiency and demonstrated cell fate patterning on multiple axes. However, gastruloids lack anterior neural progenitors that give rise to brain tissues in the embryo. Here, we report a novel culture protocol to coax mESCs into post-implantation epiblast-like (EPI) aggregates in high throughput on bioengineered microwell arrays. We show that upon inhibition of the Wnt signaling pathway, EPI aggregates establish an extended axial patterning, leading to co-derivation of anterior neural progenitors and posterior tissues. Our approach is amenable to large-scale studies aimed at identifying novel regulators of gastrulation and anterior neural development that is currently out of reach with existing embryoid models. This work should contribute to the advancement of the nascent field of synthetic embryology, opening up exciting perspectives for various applications of pluripotent stem cells in disease modeling and tissue engineering.


Key features

• A new gastruloid culture system to model post-implantation mouse embryonic development in vitro

• High-throughput formation of epiblast-like aggregates on hydrogel microwells

• Builds upon conventional gastruloid cultures and provides insight into the role of Wnt signaling for the formation of anterior neural tissues


Graphical overview


0 Q&A 256 Views Jul 5, 2023

The trachea tube is the exclusive route to allow gas exchange between the external environment and the lungs. Recent studies have shown the critical role of mesenchymal cells in tracheal tubulogenesis. Improved methods for studying the dynamics of the tracheal mesenchyme development are needed to investigate the cellular and molecular mechanisms during tracheal tubulogenesis. Here, we describe a detailed protocol for a systematic analysis of tracheal tube development to enable observing tracheal smooth muscle (SM) and cartilage ring formation. We describe immunostaining, confocal and stereomicroscopy imaging, and quantitative methods to study the process of tracheal SM and cartilage ring development, including SM cell alignment, polarization, and changes in cell shape as well as mesenchymal condensation. The technologies and approaches described here not only improve analysis of the patterning of the developing trachea but also help uncover the mechanisms underlying airway disease. This protocol also provides a useful technique to analyze cell organization, polarity, and nuclear shape in other organ systems.

0 Q&A 363 Views Jul 5, 2023

Cellular protrusions are fundamental structures for a wide variety of cellular behaviors, such as cell migration, cell–cell interaction, and signal reception. Visualization of cellular protrusions in living cells can be achieved by labeling of cytoskeletal actin with genetically encoded fluorescent probes. Here, we describe a detailed experimental procedure to visualize cellular protrusions in medaka embryos, which consists of the following steps: preparation of Actin-Chromobody-GFP and α-bungarotoxin mRNAs for actin labeling and immobilization of the embryo, respectively; microinjection of the mRNAs into embryos in a mosaic fashion to sparsely label individual cells; removal of the hard chorion, which hampers observation; and visualization of cellular protrusions in the embryo with a confocal microscope. Overall, our protocol provides a simple method to reveal cellular protrusions in vivo by confocal microscopy.

0 Q&A 749 Views Jun 5, 2023

Chronic manipulation in neonatal mice is a technical challenge, but it can achieve greater insights into how mice develop immediately after birth. However, these manipulations can often result in maternal rejection and consequently serious malnourishment and occasional death. Here, we describe a method to effectively hand rear mice to develop normally during the first post-natal week. In our experiments, we were able to negate the feeding deficiencies of anosmic mutant mice when compared to littermate controls. As a result, the delayed neuronal remodeling seen in maternally reared mutant mice was not seen in the hand-reared mutant mice. This methodology is user intensive but can be useful for a broad range of studies either requiring many interventions or one intervention that can result in maternal rejection or being outcompeted by healthy littermates.

0 Q&A 366 Views May 5, 2023

X-ray computed microtomography (µCT) is a powerful tool to reveal the 3D structure of tissues and organs. Compared with the traditional sectioning, staining, and microscopy image acquisition, it allows a better understanding of the morphology and a precise morphometric analysis. Here, we describe a method for 3D visualization and morphometric analysis by µCT scanning of the embryonic heart of iodine-stained E15.5 mouse embryos.

0 Q&A 278 Views Mar 20, 2023

Adult stem cells not only maintain tissue homeostasis but are also critical for tissue regeneration during injury. Skeletal stem cells are multipotent stem cells that can even generate bones and cartilage upon transplantation to an ectopic site. This tissue generation process requires essential stem cell characteristics including self-renewal, engraftment, proliferation, and differentiation in the microenvironment. Our research team has successfully characterized and isolated skeletal stem cells (SSCs) from the cranial suture called suture stem cells (SuSCs), which are responsible for craniofacial bone development, homeostasis, and injury-induced repair. To assess their stemness features, we have demonstrated the use of kidney capsule transplantation for an in vivo clonal expansion study. The results show bone formation at a single-cell level, thus permitting a faithful assessment of stem cell numbers at the ectopic site. The sensitivity in assessing stem cell presence permits using kidney capsule transplantation to determine stem cell frequency by limiting dilution assay. Here, we described detailed protocols for kidney capsule transplantation and limiting dilution assay. These methods are extremely valuable both for the evaluation of skeletogenic ability and the determination of stem cell frequency.

0 Q&A 1907 Views Aug 20, 2022

Currently, there are several in vitro protocols that focus on directing human induced pluripotent stem cell (hiPSC) differentiation into either the cardiac or pulmonary lineage. However, these systemsprotocols are unable to recapitulate the critical exchange of signals and cells between the heart and lungs during early development. To address this gap, here we describe a protocol to co-differentiate cardiac and pulmonary progenitors within a single hiPSC culture by temporal specific modulation of Wnt and Nodal signaling. Subsequently, human cardio-pulmonary micro-tissues (μTs) can be generated by culturing the co-induced cardiac and pulmonary progenitors in 3D suspension culture. Anticipated results include expedited alveolarization in the presence of cardiac cells, and segregation of the cardiac and pulmonary μTs in the absence of exogenous Wnt signaling. This protocol can be used to model cardiac and pulmonary co-development, with potential applications in drug testing, and as a platform for expediting the maturation of pulmonary cells for lung tissue engineering.

0 Q&A 1980 Views Jun 20, 2022

In this study, we present a detailed protocol for live imaging and quantitative analysis of floral meristem development in Aquilegia coerulea, a member of the buttercup family (Ranunculaceae). Using confocal microscopy and the image analysis software MorphoGraphX, we were able to examine the cellular growth dynamics during floral organ primordia initiation, and the transition from floral meristem proliferation to termination. This protocol provides a powerful tool to study the development of the meristem and floral organ primordia, and should be easily adaptable to many plant lineages, including other emerging model systems. It will allow researchers to explore questions outside the scope of common model systems.

0 Q&A 3038 Views Jan 5, 2022

RNA sequencing allows for the quantification of the transcriptome of embryos to investigate transcriptional responses to various perturbations (e.g., mutations, infections, drug treatments). Previous protocols either lack the option to genotype individual samples, or are laborious and therefore difficult to do at a large scale. We have developed a protocol to extract total nucleic acid from individual zebrafish embryos. Individual embryos are lysed in 96-well plates and nucleic acid is extracted using SPRI beads. The total nucleic acid can be genotyped and then DNase I treated to produce RNA samples for sequencing. This protocol allows for processing large numbers of individual samples, with the ability to genotype each sample, which makes it possible to undertake transcriptomic analysis on mutants at timepoints before the phenotype is visible.


Graphic abstract:



Extraction of total nucleic acid from individual zebrafish embryos for genotyping and RNA-seq.

0 Q&A 1698 Views Oct 20, 2021

Lymphatic vessels are abundant in the skin where they regulate interstitial fluid uptake and immune surveillance. Defects in dermal lymphatic vessels, such as fewer vessels and abnormal lymphatic vessel coverage with mural cells, are frequently associated with lymphedema and other lymphatic disorders. Whole-mount immunohistochemistry allows the visualization of dermal lymphatic vessels and identifies morphogenetic defects. Most dermal lymphatic vessels start growing during embryogenesis from lymph sacs that are located close to the axilla towards the dorsal and ventral midlines. Here, we present an approach that we have developed to permeabilize, immunolabel, clear, and visualize the lymphatic vessels. These simple and inexpensive techniques reproducibly generate images of dermal lymphatic vessels with great clarity.




We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.