Biochemistry


Categories

Protocols in Current Issue
Protocols in Past Issues
0 Q&A 1311 Views Aug 5, 2022

In eukaryotic cells, RNA Polymerase II (RNAP2) is the enzyme in charge of transcribing mRNA from DNA. RNAP2 possesses an extended carboxy-terminal domain (CTD) that gets dynamically phosphorylated as RNAP2 progresses through the transcription cycle, therefore regulating each step of transcription from recruitment to termination. Although RNAP2 residue-specific phosphorylation has been characterized in fixed cells by immunoprecipitation-based assays, or in live cells by using tandem gene arrays, these assays can mask heterogeneity and limit temporal and spatial resolution. Our protocol employs multi-colored complementary fluorescent antibody-based (Fab) probes to specifically detect the CTD of the RNAP2 (CTD-RNAP2), and its phosphorylated form at the serine 5 residue (Ser5ph-RNAP2) at a single-copy HIV-1 reporter gene. Together with high-resolution fluorescence microscopy, single-molecule tracking analysis, and rigorous computational modeling, our system allows us to visualize, quantify, and predict endogenous RNAP2 phosphorylation dynamics and mRNA synthesis at a single-copy gene, in living cells, and throughout the transcription cycle.


Graphical abstract:



Schematic of the steps for visualizing, quantifying, and predicting RNAP2 phosphorylation at a single-copy gene.


0 Q&A 11041 Views Apr 5, 2016
This effective, robust protocol generates glass coverslips coated with biotin-functionalized polyethylene glycol (PEG), making the glass surface resistant to non-specific absorption of biomolecules, and permitting immobilization of biomolecules for subsequent single-molecule tracking of biochemical reactions. The protocol can be completed in one day, and the coverslips can be stored for at least 1 month. We have confirmed that the PEG surfaces prepared according to the protocol are resistant to non-specific adsorption by a wide range of biomolecules (bacterial, mitochondrial, and human transcription factors, DNA, and RNA) and biological buffers.



We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.