Molecular Biology


Protocols in Current Issue
Protocols in Past Issues
0 Q&A 519 Views Sep 20, 2023

The study of translation is important to the understanding of gene expression. While genome-wide measurements of translation efficiency (TE) rely upon ribosome profiling, classical approaches to address translation of individual genes of interest rely on biochemical methods, such as polysome fractionation and immunoprecipitation (IP) of ribosomal components, or on reporter constructs, such as luciferase reporters. Methods to investigate translation have been developed that, however, require considerable research effort, including addition of numerous features to mRNA regions, genomic integration of reporters, and complex data analysis. Here, we describe a simple biochemical reporter assay to study TE of mRNAs expressed from a transiently transfected plasmid, which we term Nascent Chain Immunoprecipitation (NC IP). The assay is based on a plasmid expressing an N-terminally Flag-tagged protein and relies on the IP of Flag-tagged nascent chains from elongating ribosomes, followed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) quantification of eluted mRNA. We report that elution of mRNA following IP can be achieved by treatment with puromycin, which releases ribosome-mRNA complexes, or with purified Flag peptide, which instead releases nascent chain-ribosome-mRNA complexes. In the example described in this protocol, untranslated regions (UTRs) of a gene of interest were used to flank a FlagVenus coding sequence, with the method allowing to infer UTR-dependent regulation of TE. Importantly, our method enables discrimination of translating from non-translating mRNAs. Additionally, it requires simple procedures and standard laboratory equipment. Our method can be used to test the effect of regulators, such as microRNAs or therapeutic drugs or of various genetic backgrounds, on translation of any user-selected mRNA.

Key features

• The novel NC IP protocol builds upon a previously published method for detection of mRNA-binding proteins (Williams et al., 2022).

• The NC IP protocol is adapted for detecting mRNA actively undergoing translation.

• The method uses mammalian cell culture but could be adapted to multiple organisms, including budding yeast (S. cerevisiae).

Graphical overview

Design of the Nascent Chain Immunoprecipitation (NC IP) reporter and assay. Left. The construct carries a 3× Flag tag at the N-terminal end of Venus protein (FlagVenus). In this example, the reporter is adapted to study untranslated regions (UTR)-dependent expression by flanking FlagVenus coding sequence with UTRs of Aurora kinase A (AURKA) mRNA (depicted reporters refer to Cacioppo et al., 2023, Figure 3). The depicted reporters carry mutations in the proximal (p) or distal (d) polyadenylation signal (PAS). Right. Following reporter transfection, ribosomes are locked onto reporter mRNA by treating cells with cycloheximide (CHX), which prevents ribosome run-off and additional rounds of elongation, before cell lysis and immunoprecipitation (IP) of FlagVenus nascent chains via anti-Flag beads. Reporter mRNAs are then eluted, isolated, and quantified by RT-qPCR.

0 Q&A 843 Views Aug 20, 2023

Ribosome footprint profiling has demonstrated that ribosomes can be slowed or stalled on select mRNAs, often due to the presence of rare codons, stalling motifs, or via a ribosome-binding protein (e.g., FMRP). Stalled ribosomes can act as physical roadblocks for trailing ribosomes and ultimately can cause ribosome collisions that stimulate no-go mRNA decay. Detecting stalled or slowed ribosomes in cells by ribosome footprint profiling or classic polysome profiling is laborious, technically challenging, and low throughput. Here, we present a protocol to assay for stalled ribosomes on in vitro–transcribed reporter mRNAs using a robust, commercially available mammalian in vitro translation lysate and an optimized low-speed sucrose cushion. In short, we take advantage of the ability of puromycin to incorporate into the nascent polypeptide and cause the ribosome to dissociate from the mRNA during active elongation, as well as the ability to selectively pellet ribosomes through a low-speed sucrose cushion due to their large molecular weight. Stalled ribosomes are not actively elongating and do not incorporate puromycin, allowing the ribosome-bound mRNA to pellet in the low-speed sucrose cushion. RT-qPCR is used to quantify the amount of ribosome-bound reporter mRNA in the pellet. This workflow allows for direct assessment of stalled ribosomes and is fully amendable to insertion of putative stalling motifs in the target mRNA, as well as supplementation with recombinant proteins or small molecule inhibitors that target translation elongation.

Key features

• This protocol is optimized for cap-dependent in vitro translation in the dynamic linear range.

• Details for generating capped reporter mRNA in one day are provided.

• Requires as little as one day to complete if starting with in vitro–transcribed mRNA.

• This protocol requires access to an ultracentrifuge and a real-time PCR system.

Graphical overview

0 Q&A 842 Views Jul 5, 2023

The rapid display and delivery method for customized tumor mRNA vaccines is limited. Herein, bacteria-derived outer membrane vesicles (OMVs) are employed as an mRNA delivery platform by surface engineering of an RNA-binding protein, L7Ae. OMV-L7Ae can rapidly adsorb boxC/D sequence-labeled mRNA antigens through L7Ae-boxC/D binding and deliver them into HEK-293T and dendritic cells. This platform provides an mRNA delivery technology distinct from lipid nanoparticles (LNPs) for personalized mRNA tumor vaccination and with a Plug-and-Display strategy suitable for rapid preparation of the personalized mRNA tumor vaccine against varied tumor antigens.

Key features

• OMVs are employed as an mRNA delivery platform through L7Ae-boxC/D binding.

Graphical overview

0 Q&A 382 Views Jul 5, 2023

Cellular protrusions are fundamental structures for a wide variety of cellular behaviors, such as cell migration, cell–cell interaction, and signal reception. Visualization of cellular protrusions in living cells can be achieved by labeling of cytoskeletal actin with genetically encoded fluorescent probes. Here, we describe a detailed experimental procedure to visualize cellular protrusions in medaka embryos, which consists of the following steps: preparation of Actin-Chromobody-GFP and α-bungarotoxin mRNAs for actin labeling and immobilization of the embryo, respectively; microinjection of the mRNAs into embryos in a mosaic fashion to sparsely label individual cells; removal of the hard chorion, which hampers observation; and visualization of cellular protrusions in the embryo with a confocal microscope. Overall, our protocol provides a simple method to reveal cellular protrusions in vivo by confocal microscopy.

0 Q&A 708 Views Jun 5, 2023

Polysome profiling is widely used to isolate and analyze polysome fractions, which consist of actively translating mRNAs and ribosomes. Compared to ribosome profiling and translating ribosome affinity purification, polysome profiling is simpler and less time consuming in sample preparation and library constructions. Spermiogenesis, i.e., the post-meiotic phase of male germ cell development, is a highly coordinated developmental process in which transcription and translation are decoupled because of nuclear condensation, resulting in translation regulation as the major mode for the regulation of gene expression in post-meiotic spermatids. To understand the translation regulation during spermiogenesis, an overview of translational state of spermiogenic mRNAs is required. Here, we describe a protocol to identify translating mRNAs using polysome profiling. Briefly, mouse testes are gently homogenized to release polysomes containing translating mRNAs, following polysome-bound mRNAs isolated by sucrose density gradient purification and characterized by RNA-seq. This protocol allows to quickly isolate translating mRNAs from testes and analyze the discrepancy of translational efficiency in mouse testes from different mouse lines.

Key features

• Quickly obtain polysome RNAs from testes.

• Omit RNase digestion and RNA recovery from gel.

• High efficiency and robustness compared to ribo-seq.

Graphical overview

Schematic illustrating the experimental design for polysome profiling in mouse testes. Mouse testes are homogenized and lysed in Sample preparation, and polysome RNAs are enriched by sucrose gradient centrifugation and used to calculate translation efficiency in Sample analysis.

0 Q&A 1903 Views Mar 20, 2023

Polysome profiling by sucrose density gradient centrifugation is commonly used to study the overall degree of translation (messenger RNA to protein synthesis). Traditionally, the method begins with synthesis of a 5–10 mL sucrose gradient onto which 0.5–1 mL of cell extract is layered and centrifuged at high speed for 3–4 h in a floor-model ultracentrifuge. After centrifugation, the gradient solution is passed through an absorbance recorder to generate a polysome profile. Ten to twelve fractions (0.8–1 mL each) are collected for isolating different RNA and protein populations. The overall method is tedious and lengthy (6–9 h), requires access to a suitable ultracentrifuge rotor and centrifuge, and requires a substantial amount of tissue material, which can be a limiting factor. Moreover, there is often a dilemma over the quality of RNA and protein populations in the individual fractions due to the extended experiment times. To overcome these challenges, here we describe a miniature sucrose gradient for polysome profiling using Arabidopsis thaliana seedlings that takes ~1 h centrifugation time in a tabletop ultracentrifuge, reduced gradient synthesis time, and also less tissue material. The protocol described here can be easily adapted to a wide variety of organisms and polysome profiling of organelles, such as chloroplasts and mitochondria.

Key Features

• Mini sucrose gradient for polysome profiling that requires less than half the processing time vs. traditional methods.

• Reduced starting tissue material and sample volume for sucrose gradients.

• Feasibility of RNA and protein isolation from polysome fractions.

• Protocol can be easily modified to a wide variety of organisms (and even polysome profiling of organelles, such as chloroplast and mitochondria).

Graphical Overview

Figure 1. Graphical overview of polysome profiling using mini sucrose gradient. A. One milliliter each of 15% (w/v) and 50% (w/v) sucrose gradient solution is added to the individual chambers of the gradient maker. While mixing with a small magnetic stirrer in the 50% solution chamber, base station knob is turned to open position, allowing sucrose gradient solution to slowly flow through the outlet into a 2.2 mL gradient tube. After centrifugation at 50,000 rpm (213,626.2 × g) in a swinging bucket rotor for 70 min at 4 °C, the gradient tube is stored at 4 °C for the next steps. B. Cell extract from 12-day-old vertically grown Arabidopsis thaliana seedlings is centrifuged twice and 100 µL of supernatant is gently layered on the pre-made sucrose gradient from step A. After centrifugation as described in step A, polysome profile is obtained by feeding the gradient solution through an absorbance recorder (A254 nm). Eight (200 µL) fractions are collected for RNA and protein isolation.
0 Q&A 1722 Views Jul 20, 2022

Cilia and flagella are microtubule-based hair-like organelles protruding from the surface of most eukaryotic cells, and play essential roles in cell locomotion, left-right asymmetry, embryo development, and tissue homeostasis. With isolated cilia and flagella, great progress has been made in understanding the composition, structure, and function of cilia. However, the current cilia/flagella isolation methods are deficient in the integrity or productivity of purified cilia when applied to mammalian motile cilia. Here, we describe a new protocol that isolates cilia shafts from mouse ependymal cells, by horizontal shear force and mild detergent. This method enables the production of virtually integral cilia with high yields and less cell body contamination. It is suitable for immunostaining, puromycin labeling assay, and proximity ligation assay of mammalian motile cilia.

Graphical abstract:

0 Q&A 2125 Views Nov 5, 2021

RNA granules (RGs) are membraneless intracellular compartments that play important roles in the post-transcriptional control of gene expression. Stress granules (SGs) are a type of RGs that form under environmental challenges and/or internal cellular stresses. Stress treatments lead to strong mRNAs translational inhibition and storage in SGs until the normal growth conditions are restored. Intriguingly, we recently showed that plant stress granules are associated with siRNA bodies, where the RDR6-mediated and transposon-derived siRNA biogenesis occurs (Kim et al., 2021). This protocol provides a technical workflow for the enrichment of cytoplasmic RGs from Arabidopsis seedlings. We used the DNA methylation-deficient ddm1 mutant in our study, but the method can be applied to any other plant samples with strong RG formation. The resulting RG fractions can be further tested for either RNAs or proteins using RNA-seq and mass spectrometry-based proteomics.

0 Q&A 2376 Views Aug 5, 2021

Plants make up by far the largest part of biomass on Earth. They are the primary source of food and the basis of most drugs used for medicinal purposes. Similarly to all eukaryotes, plant cells also use mitochondria for energy production. Among mitochondrial gene expression processes, translation is the least understood; although, recent advances have revealed the specificities of its main component, the mitochondrial ribosome (mitoribosome). Here, we present a detailed protocol to extract highly pure cauliflower mitochondria by differential centrifugation for the purification of mitochondrial ribosomes using a sucrose gradient and the preparation of cryo-electron microscopy (cryo-EM) grids. Finally, the specific bioinformatics pipeline used for image acquisition, the processing steps, and the data analysis used for cryo-EM of the plant mitoribosome are described. This protocol will be used for further analysis of the critical steps of mitochondrial translation, such as its initiation and regulation.

0 Q&A 2421 Views Jul 20, 2021

Here, we describe how to image and quantitate the translation dynamics of a bicistronic biosensor that we recently created to fairly compare cap-dependent and IRES-mediated translation at single-molecule resolution in live human cells. This technique employs a pair of complementary intrabodies loaded into living cells that co-translationally bind complementary epitopes in the two separate ORFs of the bicistronic biosensor. This causes the biosensor to fluoresce in different colors depending on which ORF/epitopes are translated. Using the biosensor together with high-resolution fluorescence microscopy and single-molecule tracking analysis allows for the quantitative comparison of translation dynamics between the two ORFs at a resolution of tens-of-nanometers in space and sub-seconds in time, which is not possible with more traditional GFP or luciferase reporters. Since both ORFs are on the same biosensor, they experience the same microenvironment, allowing a fair comparison of their relative translational activities. In this protocol, we describe how to get this assay up and running in cultured human cells so that translation dynamics can be studied under both normal and stressful cellular conditions. We also provide a number of useful tips and notes to help express components at appropriate levels inside cells for optimal live cell imaging.

Graphical abstract:

Steps required for 3-color single-molecule translation imaging and analysis.

We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.