Molecular Mechanisms of Circadian Clock Function.
A wide variety of biological processes exhibit a rhythmic pattern of activity with a period of 24 hours. The temporal coordination of these rhythms is regulated by a cellular endogenous mechanism known as circadian clock. From bacteria to humans, the presence of the circadian clock has provided a remarkable adaptive advantage throughout evolution. In plants, the temporal synchronization of physiology with the environment is essential for successful plant growth and development. The intimate connection between light signaling pathways and the circadian oscillator allows the anticipation of the environmental transitions and the measurement of day-length as an indicator of changing seasons.
Current research in our group focuses on identifying new components and mechanisms of circadian clock progression in Arabidopsis thaliana. We are interested in elucidating the regulatory networks and the functional modules underlying the circadian clock function. Our research also focuses on studies about chromatin remodeling and the molecular determinants responsible for modulating the circadian activity. We also study the role of post-transcriptional regulation at the core of the clock and the impact of circadian clock function on plant growth and development. We apply to our studies a combination of genetic, biochemical, cellular and molecular approaches to obtain a comprehensive view of the interactive networks underlying circadian clock progression in plants.
Conjecture Regarding Posttranslational Modifications to the Arabidopsis Type I Proton-Pumping Pyrophosphatase (AVP1) (2017). GA Pizzio, KD Hirschi, RA Gaxiola. Frontiers in Plant Science. 12 September.
In Gel Kinase Assay (2017). GA Pizzio, PL Rodriguez. Bio-protocol 7 (5), BioProtoc.2170. ISSN: 2331-8325.
Structural basis for the reversibility of proton Pyrophosphatase (2016). Regmi KC, Pizzio GA, Gaxiola RA. Plant Signal Behav: 11(10):e1231294. (ISSN: 1559-2324).
Constitutive and companion cell-specific overexpression of AVP1, encoding a proton-pumping pyrophosphatase, enhances biomass accumulation, phloem loading and long-distance transport (2016). Khadilkar AS, Yadav UP, Salazar C, Shulaev V, Paez-Valencia J, Pizzio GA, Gaxiola RA, Ayre BG. Plant Physiology: 170(1):401-14. doi: 10.1104/pp.15.01409. (ISSN: 0032-0889).
Plant H+-PPases: Reversible Enzymes with Contrasting Functions Dependent on Membrane Environment (2016). Gaxiola RA, Regmi K, Paez-Valencia J, Pizzio G, Zhang S. Molecular Plant: 9(3):317-9. doi: 10.1016/j.molp.2015.09.008. (ISSN: 1752-9867).
Rhizosphere Acidification Assay (2015). Gaston A. Pizzio, Kamesh Regmi, Roberto Gaxiola. Bio-protocol 5 (23), e1676. ISSN: 2331-8325.
Arabidopsis type I proton-pumping pyrophosphatase expresses strongly in phloem, where it is required for pyrophosphate metabolism and photosynthate partitioning (2015). Pizzio GA, Paez-Valencia J, Khadilkar AS, Regmi K, Patron-Soberano A, Zhang S, Sanchez-Lares J, Furstenau T, Li J, Sanchez-Gomez C, Valencia-Mayoral P, Yadav UP, Ayre BG, Gaxiola RA. Plant Physiology: Apr;167(4):1541-53. doi: 10.1104/pp.114.254342. (ISSN: 0032-0889).
The PYL4 A194T Mutant Uncovers a Key Role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA Interaction for Abscisic Acid Signaling and Plant Drought Resistance (2013). Pizzio GA, Rodriguez L, Antoni R, Gonzalez-Guzman M, Yunta C, Merilo E, Kollist H, Albert A, Rodriguez PL. Plant Physiology: Sep; 163(1):441-55. (ISSN: 0032-0889).
PYRABACTIN RESISTANCE1-LIKE8 Plays an Important Role for the Regulation of Abscisic Acid Signaling in Root (2013). Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Peirats, M., Pizzio, G.A., Fernandez, M.A., De Winne N., De Jaeger G., Dietrich, D., Bennett M.J., Rodriguez P.L. Plant Physiology: Feb; 161(2):931-41. (ISSN: 0032-0889).
Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid (2012). Gonzalez-Guzman M, Pizzio G, Antoni R, Vera-Sirera F, Merilo E, Bassel GW, Fernández MA, Holdsworth MJ, Perez-Amador MA, Kollist H, Rodriguez PL. The Plant Cell: Jun; 24(6):2483-96. (ISSN: 1040-4651).
Selective inhibition of clade A phosphatases type 2C by PYR/PYL/RCAR abscisic acid receptors (2012). Regina Antoni, Miguel Gonzalez-Guzman, Lesia Rodriguez, Americo Rodrigues, Gastón A. Pizzio, Pedro L. Rodriguez. Plant Physiology: Feb; 158(2):970-80. (ISSN: 0032-0889).
News on ABA transport, protein degradation, and ABFs/WRKYs in ABA signaling (2011). Antoni R, Rodriguez L, Gonzalez-Guzman M, Pizzio GA, Rodriguez PL. Current Opinion in Plant Biology: Oct;14(5):547-53. (ISSN: 1369-5266).
Photic regulation of MAP kinase phosphatases MKP1/2 and MKP3 in the hamster suprachiasmatic nuclei (2008). Gastón A. Pizzio and Diego A. Golombek. Journal of Molecular Neuroscience: Feb, 34(2):187-92 (ISSN: 0895-8696).
Constitutive Activation of the ERK-MAPK Pathway in the Suprachiasmatic Nuclei Inhibits Circadian Resetting (2006). Ernesto C. Hainich, Gastón A. Pizzio, and Diego A. Golombek. FEBS Letters: Dec 11;580(28-29):6665-8 (ISSN: 0014-5793).
Nerve Growth Factor-induced Circadian Phase Shifts and MAP Kinase Activation in the Hamster SCN (2005). Gastón A. Pizzio, Ernesto C. Hainich, Santiago A. Plano, Martin R. Ralph and Diego A. Golombek. European Journal of Neuroscience: 2005 may; 22(3):665-71. (ISSN 0953-816X).
Circadian and photic regulation of ERK, JNK and p38 in the hamster SCN (2003). Pizzio, G.A.; Hainich, E.C.; Ferreyra, G.A.; Coso, O.A.; Golombek, D.A. Neuroreport: 2003 Aug 6;14(11):1417-9. (ISSN 0959-4965).
From light to genes: Moving the hands of the circadian clock (2003). Golombek, D.A.; Ferreyra, G.A.; Agostino, P.A.; Murad, A.D.; Rubio, M.F.; Pizzio, G.A.; Katz, M.E.; Marpegan L.; Bekinschtein, T.A. Frontiers in Bioscience: May 1, 2003. 8, s285-293, (ISSN 1093-4715).