https://scholar.google.com/citations?user=XPKpu8cAAAAJ&hl=en3. Sharma AK, Khandelwal R, Wolfrum C (2024). Futile cycles: Emerging utility from apparent futility. Cell Metabolism. https://doi.org/10.1016/j.cmet.2024.03.008, (co-corresponding author).
4. Sharma AK, Khandelwal R, Wolfrum C (2024). Futile lipid cycling: from biochemistry to physiology. Nature Metabolism. https://doi.org/10.1038/s42255-024-01003-0, (co-corresponding author).
5. Sharma AK, Wolfrum C (2023) DGAT inhibition at post-absorptive phase reduces plasma fatty acids by increasing fatty acid oxidation. EMBO Molecular Medicine, (corresponding author).
6. Sharma AK, Wolfrum C (2023) Lipid cycling isn’t all futile. Nature Metabolism, 1-2. https://doi.org/10.1038/s42255-023-00779-x (co-corresponding author).
7. Sharma AK, Wang T, Othman A, Khandelwal R, Balaz M, Modica S, Zamboni N, Wolfrum C (2023) Basal re-esterification finetunes mitochondrial fatty acid utilization. Molecular Metabolism, 71, 101701.
8. Chidananda AH, Khandelwal R, Jamkhindikar A, Pawar AD, Sharma AK, Sharma Y (2022) Secretagogin is a Ca2+-dependent stress-responsive chaperone that may also play a role in aggregation-based proteinopathies. Journal of Biological Chemistry. https://doi.org/10.1016/j.jbc.2022.102285 (co-corresponding author).
9. Li R, Sharma AK, Zhu J, Zheng B, Xiao G, Chen L (2022) Nutritional biology of chestnuts: A perspective review. Food Chemistry, https://doi.org/10.1016/j.foodchem.2022.133575.
10. Khandelwal R, Sharma AK, Biswa BB, Sharma Y (2022) Extracellular Secretagogin is internalized into the cells through endocytosis. FEBS J. https://doi.org/10.1111/febs.16338 (equal first author).
11. Wang T, Sharma AK, Wolfrum C (2022) Novel insights into adipose tissue heterogeneity. Reviews in Endocrine and Metabolic Disorders. https://doi.org/10.1007/s11154-021-09703-8.
12. Neubauer H, Löffler M, Betz M, Blondin D, Augustin R, Sharma AK, Tseng YH, Scheele C, Zimdahl H, Mark M, Hennige AM, Wolfrum C, Langhans W, Hamilton BS (2021) Challenges in tackling energy expenditure as obesity therapy - from preclinical models to clinical application. Molecular Metabolsim. DOI: 10.1016/j.molmet.2021.101237.
13. Sharma AK, Khandelwal R, Chadalawada S, Ram NS, Raj A, Kumar JM, Sharma Y (2019) Secretagogin Regulates Insulin Signaling by Direct Insulin Binding. iScience. https://doi.org/10.1016/j.isci.2019.10.066.
14. Chidananda AH, Sharma AK, Khandelwal R, Sharma Y (2019) Secretagogin Binding prevents α-synoclien Fibrillation. Biochemistry. https://doi.org/10.1021/acs.biochem.9b00656. (equal first author).
15. Sharma AK*, Khandelwal R, Sharma Y* (2018) Veiled Potential of Secretagogin in Diabetes: Correlation or Coincidence. Trends in Endocrinology and Metabolism. DOI: https://doi.org/10.1016/j.tem.2019.01.007. (corresponding author).
16. Sharma AK*, Khandelwal R, Sharma Y (2018) Secretagogin: Purification for Biophysical & Cell Biological Studies. Methods in Molecular Biology; Calcium-Binding Proteins of the EF-Hand Superfamily. 551-566. (corresponding author).
17. Khandelwal R, Sharma AK, Chadalawada S, Sharma Y (2017) Secretagogin is a Redox-Responsive Ca2+ Sensor. Biochemistry, 56 (2), 411–420. (equal first author).
18. Phanindranath R, Sudhakar DV, Sharma AK, Thangaraj K, Sharma Y. (2016) Optimization of purification method and characterization of recombinant human Centrin-1. Protein Expr. Purif., 124:48-54.
19. Sharma AK, Khandelwal R, Sharma Y, Vangipurapu R (2015) Secretagogin, a Hexa EF-hand CaBP: High Level, One-Step Bacterial Purification, and Properties. Protein Expr. Purif., 109, 113-119. (corresponding author).
20. Vangipurapu R, Sharma AK, Rajyalakshmi M, Chandra K, Chary KVR, Sharma Y (2015) Liaison Between Myristoylation and Cryptic EF-hand Motif Confers Ca2+ Sensitivity to Neuronal Calcium Sensor-1. Biochemistry, 54, 1111-1122. (equal first author).