Education
Ph.D, National Institute of Immunology, India, 2000
Current position
Assistant Professor, Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
Publications
-
Himal, I., Goyal, U. and Ta, M. (2017). Evaluating Wharton's Jelly-Derived Mesenchymal Stem Cell's Survival, Migration, and Expression of Wound Repair Markers under Conditions of Ischemia-Like Stress. Stem Cells Int 2017: 5259849.
-
Arora, S., Saha, S., Roy, S., Das, M., Jana, S. S. and Ta, M. (2015). Role of Nonmuscle Myosin II in Migration of Wharton's Jelly-Derived Mesenchymal Stem Cells. Stem Cells Dev 24(17): 2065-2077.
-
Swamynathan, P., Venugopal, P., Kannan, S., Thej, C., Kolkundar, U., Bhagwat, S., Ta, M., Majumdar, A. S. and Balasubramanian, S. (2014). Are serum-free and xeno-free culture conditions ideal for large scale clinical grade expansion of Wharton's jelly derived mesenchymal stem cells? A comparative study. Stem Cell Res Ther 5(4): 88.
-
Shivakumar, S. B., Bharti, D., Subbarao, R. B., Jang, S. J., Park, J. S., Ullah, I., Park, J. K., Byun, J. H., Park, B. W. and Rho, G. J. (2016). DMSO- and Serum-Free Cryopreservation of Wharton's Jelly Tissue Isolated From Human Umbilical Cord. J Cell Biochem 117(10): 2397-2412.
-
Sharma, T., Kumari, P., Pincha, N., Mutukula, N., Saha, S., Jana, S. S. and Ta, M. (2014). Inhibition of non-muscle myosin II leads to G0/G1 arrest of Wharton's jelly-derived mesenchymal stromal cells. Cytotherapy 16(5): 640-652.
-
Balasubramanian, S., Venugopal, P., Sundarraj, S., Zakaria, Z., Majumdar, A. S. and Ta, M. (2012). Comparison of chemokine and receptor gene expression between Wharton's jelly and bone marrow-derived mesenchymal stromal cells. Cytotherapy 14(1): 26-33.
-
Venugopal, P., Balasubramanian, S., Majumdar, A. S. and Ta, M. (2011). Isolation, characterization, and gene expression analysis of Wharton's jelly-derived mesenchymal stem cells under xeno-free culture conditions. Stem Cells Cloning 4: 39-50.
-
Nekanti, U., Mohanty, L., Venugopal, P., Balasubramanian, S., Totey, S. and Ta, M. (2010). Optimization and scale-up of Wharton's jelly-derived mesenchymal stem cells for clinical applications. Stem Cell Res 5(3): 244-254.
-
Nekanti, U., Dastidar, S., Venugopal, P., Totey, S. and Ta, M. (2010). Increased proliferation and analysis of differential gene expression in human Wharton's jelly-derived mesenchymal stromal cells under hypoxia. Int J Biol Sci 6(5): 499-512.
-
Nekanti, U., Rao, V. B., Bahirvani, A. G., Jan, M., Totey, S. and Ta, M. (2010). Long-term expansion and pluripotent marker array analysis of Wharton's jelly-derived mesenchymal stem cells. Stem Cells Dev 19(1): 117-130.
-
Atouf, F., Park, C. H., Pechhold, K., Ta, M., Choi, Y. and Lumelsky, N. L. (2007). No evidence for mouse pancreatic beta-cell epithelial-mesenchymal transition in vitro. Diabetes 56(3): 699-702.
-
Ta, M., Atouf, F., Choi, Y. and Lumelsky, N. (2006). The defined combination of growth factors controls generation of long-term-replicating islet progenitor-like cells from cultures of adult mouse pancreas. Stem Cells 24(7): 1738-49.
-
Atouf, F., Choi, Y., Fowler, M. J., Poffenberger, G., Vobecky, J., Ta, M., Chapman, G. B., Powers, A. C. and Lumelsky, N. L. (2005). Generation of islet-like hormone-producing cells in vitro from adult human pancreas. Cell Transplant 14(10): 735-748.
-
Choi, Y., Ta, M., Atouf, F. and Lumelsky, N. (2004). Adult pancreas generates multipotent stem cells and pancreatic and nonpancreatic progeny. Stem Cells 22(6): 1070-1084.
-
Ta, M. and Vrati, S. (2000). Mov34 protein from mouse brain interacts with the 3' noncoding region of Japanese encephalitis virus. J Virol 74(11): 5108-5115.