Hiroo Takahashi
  • Laboratory for Molecular Biology of Neural System, Advanced Medical Research Center, Nara Medical University , Japan
Research focus
  • Neuroscience
Personal information


Ph.D, SOKENDAI, Japan, 2003

Current position

Assistant Professor, Lab for Molecular Biology of Neural System, Nara Medical University, Japan


  1. Takahashi, H., Ogawa, Y., Yoshihara, S., Asahina, R., Kinoshita, M., Kitano, T., Kitsuki, M., Tatsumi, K., Okuda, M., Tatsumi, K., Wanaka, A., Hirai, H., Stern, P. L. and Tsuboi, A. (2016). A Subtype of Olfactory Bulb Interneurons Is Required for Odor Detection and Discrimination Behaviors. J Neurosci 36(31): 8210-8227.
  2. Yoshihara, S., Takahashi, H. and Tsuboi, A. (2015). Molecular Mechanisms Regulating the Dendritic Development of Newborn Olfactory Bulb Interneurons in a Sensory Experience-Dependent Manner. Front Neurosci 9: 514.
  3. Yoshihara, S., Takahashi, H., Nishimura, N., Kinoshita, M., Asahina, R., Kitsuki, M., Tatsumi, K., Furukawa-Hibi, Y., Hirai, H., Nagai, T., Yamada, K. and Tsuboi, A. (2014). Npas4 regulates Mdm2 and thus Dcx in experience-dependent dendritic spine development of newborn olfactory bulb interneurons. Cell Rep 8(3): 843-857.
  4. Yoshihara, S., Takahashi, H., Nishimura, N., Naritsuka, H., Shirao, T., Hirai, H., Yoshihara, Y., Mori, K., Stern, P. L. and Tsuboi, A. (2012). 5T4 glycoprotein regulates the sensory input-dependent development of a specific subtype of newborn interneurons in the mouse olfactory bulb. J Neurosci 32(6): 2217-2226.
  5. Takahashi, H., Yoshihara, S., Nishizumi, H. and Tsuboi, A. (2010). Neuropilin-2 is required for the proper targeting of ventral glomeruli in the mouse olfactory bulb. Mol Cell Neurosci 44(3): 233-245.
  6. Takahashi, H., Sakuta, H., Shintani, T. and Noda, M. (2009). Functional mode of FoxD1/CBF2 for the establishment of temporal retinal specificity in the developing chick retina. Dev Biol 331(2): 300-310.
  7. Sakuta, H., Takahashi, H., Shintani, T., Etani, K., Aoshima, A. and Noda, M. (2006). Role of bone morphogenic protein 2 in retinal patterning and retinotectal projection. J Neurosci 26(42): 10868-10878.
  8. Shintani, T., Ihara, M., Sakuta, H., Takahashi, H., Watakabe, I. and Noda, M. (2006). Eph receptors are negatively controlled by protein tyrosine phosphatase receptor type O. Nature Neuroscience 9(6): 761-769.
  9. Shintani, T., Kato, A., Yuasa-Kawada, J., Sakuta, H., Takahashi, M., Suzuki, R., Ohkawara, T., Takahashi, H. and Noda, M. (2004). Large-scale identification and characterization of genes with asymmetric expression patterns in the developing chick retina. Journal of Neurobiology 59(1): 34-47.
  10. Takahashi, H., Shintani, T., Sakuta, H. and Noda, M. (2003). CBF1 controls the retinotectal topographical map along the anteroposterior axis through multiple mechanisms. Development 130, 5203-5215.
  11. Sakuta, H., Suzuki, R., Takahashi, H., Kato, A., Shintani, T., Iemura, S., Yamamoto, T. S., Ueno, N. and Noda, M. (2001). Ventroptin: a BMP-4 antagonist expressed in a double-gradient pattern in the retina. Science 693(5527): 111-115.
  12. Takahashi, H., Isobe, T., Horibe, S., Takagi, J., Yokosaki, Y., Sheppard, D. and Saito, Y. (2000). Tissue transglutaminase, coagulation factor XIII, and the pro-polypeptide of von Willebrand factor are all ligands for the integrins alpha 9beta 1 and alpha 4beta 1. J Biol Chem 275(31): 23589-23595.
  13. Isobe, T., Takahashi, H., Ueki, S., Takagi, J. and Saito, Y. (1999). Activity-independent cell adhesion to tissue-type transglutaminase is mediated by alpha4beta1 integrin. Eur J Cell Biol 78(12): 876-883.
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.