Kaustabh Ghosh
  • Department of Bioengineering, Program in Cell, Molecular and Developmental Biology, University of California, USA
Research fields
  • Developmental biology
Personal information

Education

Ph.D. in Biomedical Engineering, SUNY, Stony Brook, NY, 2006

Current position

Assistant Professor, Department of Bioengineering, and Participating Faculty of Cell Molecular, and Developmental Biology Program, University of California, Riverside

Publications (since 2005)

  1. Adapala, R. K., Thoppil, R. J., Ghosh, K., Cappelli, H. C., Dudley, A. C., Paruchuri, S., Keshamouni, V., Klagsbrun, M., Meszaros, J. G., Chilian, W. M., Ingber, D. E. and Thodeti, C. K. (2015). Activation of mechanosensitive ion channel TRPV4 normalizes tumor vasculature and improves cancer therapy. Oncogene. (Epub ahead of print)
  2. Yang, X., Scott, H. A., Ardekani, S., Williams, M., Talbot, P. and Ghosh, K. (2014). Aberrant cell and basement membrane architecture contribute to sidestream smoke-induced choroidal endothelial dysfunction. Invest Ophthalmol Vis Sci 55(5): 3140-3147.
  3. Adini, I., Ghosh, K., Adini, A., Chi, Z. L., Yoshimura, T., Benny, O., Connor, K. M., Rogers, M. S., Bazinet, L., Birsner, A. E., Bielenberg, D. R. and D'Amato, R. J. (2014). Melanocyte-secreted fibromodulin promotes an angiogenic microenvironment. J Clin Invest 124(1): 425-436.
  4. Pan, Z., Ghosh, K., Hung, V., Macri, L. K., Einhorn, J., Bhatnagar, D., Simon, M., Clark, R. A. and Rafailovich, M. H. (2013). Deformation gradients imprint the direction and speed of en masse fibroblast migration for fast healing. J Invest Dermatol 133(10): 2471-2479. 
  5. Adini, A., Adini, I., Ghosh, K., Benny, O., Pravda, E., Hu, R., Luyindula, D. and D'Amato, R. J. (2013). The stem cell marker prominin-1/CD133 interacts with vascular endothelial growth factor and potentiates its action. Angiogenesis 16(2): 405-416.
  6. Ghosh, K., Kanapathipillai, M., Korin, N., McCarthy, J. R. and Ingber, D. E. (2012). Polymeric nanomaterials for islet targeting and immunotherapeutic delivery. Nano Lett 12(1): 203-208.
  7. Korin, N., Kanapathipillai, M., Matthews, B. D., Crescente, M., Brill, A., Mammoto, T., Ghosh, K., Jurek, S., Bencherif, S. A., Bhatta, D., Coskun, A. U., Feldman, C. L., Wagner, D. D. and Ingber, D. E. (2012). Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 337(6095): 738-742.
  8. Ghosh, K., Khajavi, M. and Adini, A. (2012). Quantitative study of in vivo angiogenesis and vasculogenesis using Matrigel-based assays. In: Cuttitta, F. and Zudaire, E. (eds). The textbook of Angiogenesis and Lymphangiogenesis: Methods and applications.
  9. Ghosh, K., Thodeti, C. K. and Ingber, D. E. (2012). Micromechanical design criteria for tissue engineering biomaterials. In: Ratner, B., Hoffman, A. Schoen, F. and Lemons, J. (eds). Biomaterials science: An introduction to materials in medicine. 
  10. Thodeti, C. K., Matthews, B., Ravi, A., Mammoto, A., Ghosh, K., Bracha, A. L. and Ingber, D. E. (2009). TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res 104(9): 1123-1130.
  11. Liu, Y., Ji, Y., Ghosh, K., Clark, R. A., Huang, L. and Rafailovich, M. H. (2009). Effects of fiber orientation and diameter on the behavior of human dermal fibroblasts on electrospun PMMA scaffolds. J Biomed Mater Res A 90(4): 1092-1106.
  12. Pan, Z., Ghosh, K., Liu, Y., Clark, R. A. and Rafailovich, M. H. (2009). Traction stresses and translational distortion of the nucleus during fibroblast migration on a physiologically relevant ECM mimic. Biophys J 96(10): 4286-4298.
  13. Ghosh, K., Thodeti, C. K., Dudley, A. C., Mammoto, A., Klagsbrun, M. and Ingber, D. E. (2008). Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc Natl Acad Sci U S A 105(32): 11305-11310.
  14. Ghosh, K. and Ingber, D. E. (2007). Micromechanical control of cell and tissue development: implications for tissue engineering. Adv Drug Deliv Rev 59(13): 1306-1318.
  15. Ghosh, K., Pan, Z., Guan, E., Ge, S., Liu, Y., Nakamura, T., Ren, X. D., Rafailovich, M. and Clark, R. A. (2007). Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties. Biomaterials 28(4): 671-679.
  16. Clark, R. A., Ghosh, K. and Tonnesen, M. G. (2007). Tissue engineering for cutaneous wounds. J Invest Dermatol 127(5): 1018-1029.
  17. Ghosh, K., Ren, X. D., Shu, X. Z., Prestwich, G. D. and Clark, R. A. (2006). Fibronectin functional domains coupled to hyaluronan stimulate adult human dermal fibroblast responses critical for wound healing. Tissue Eng 12(3): 601-613.
  18. Ji, Y., Ghosh, K., Shu, X. Z., Li, B., Sokolov, J. C., Prestwich, G. D., Clark, R. A. and Rafailovich, M. H. (2006). Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 27(20): 3782-3792.
  19. Mehra, T. D., Ghosh, K., Shu, X. Z., Prestwich, G. D. and Clark, R. A. (2006). Molecular stenting with a crosslinked hyaluronan derivative inhibits collagen gel contraction. J Invest Dermatol 126(10): 2202-2209. 
  20. Ji, Y., Ghosh, K., Li, B., Sokolov, J. C., Clark, R. A. and Rafailovich, M. H. (2006). Dual-syringe reactive electrospinning of cross-linked hyaluronic acid hydrogel nanofibers for tissue engineering applications. Macromol Biosci 6(10): 811-817. 
  21. Ghosh, K., Shu, X. Z., Mou, R., Lombardi, J., Prestwich, G. D., Rafailovich, M. H., Clark, R. A. F. (2005). Rheological characterization of in situ crosslinkable hyaluronan hydrogels. Biomacromolecules 6: 2857-2865.
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.