TM
Tohru Minamino
  • Graduate School of Frontier Biosciences, Osaka University, Japan
Research fields
  • Microbiology
Personal information

Education

Ph.D., Graduate School of Biosphere Science, Hiroshima University, 1997 

Current Position

Associate professor, Graduate school of Frontier Biosciences, Osaka University, Japan

Publications (since 2012)

  1. Morimoto, Y. V., Kami-ike, N., Miyata, T., Kawamoto, A., Kato, T., Namba, K. and Minamino, T. (2016). High-resolution pH imaging of living bacterial cell to detect local pH differences. mBio 7: e01911-16.
  2. Furukawa, Y., Inoue, Y., Sakaguchi, A., Mori, Y., Fukumura, T., Miyata, T., Namba, K. and Minamino, T. (2016). Structural stability of flagellin subunit affects the rate of flagellin export in the absence of FliS chaperone. Mol Microbiol 102(3): 405-416.
  3. Kinoshita, M., Nakanishi, Y., Furukawa, Y., Namba, K., Imada, K. and Minamino, T. (2016). Rearrangements of alpha-helical structures of FlgN chaperone control the binding affinity for its cognate substrates during flagellar type III export. Mol Microbiol 101(4): 656-670.
  4. Imada, K., Minamino, T., Uchida, Y., Kinoshita, M. and Namba, K. (2016). Insight into the flagella type III export revealed by the complex structure of the type III ATPase and its regulator. Proc Natl Acad Sci U S A 113(13): 3633-3638.
  5. Minamino, T., Morimoto, Y. V., Hara, N., Aldridge, P. D. and Namba, K. (2016). The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export. PLoS Pathog 12(3): e1005495.
  6. Minamino, T., Kinoshita, M., Inoue, Y., Morimoto, Y. V., Ihara, K., Koya, S., Hara, N., Nishioka, N., Kojima, S., Homma, M. and Namba, K. (2016). FliH and FliI ensure efficient energy coupling of flagellar type III protein export in Salmonella. Microbiologyopen 5(3): 424-435.
  7. McMurry, J. L., Minamino, T., Furukawa, Y., Francis, J. W., Hill, S. A., Helms, K. A. and Namba, K. (2015). Weak Interactions between Salmonella enterica FlhB and Other Flagellar Export Apparatus Proteins Govern Type III Secretion Dynamics. PLoS One 10(8): e0134884.
  8. Minamino, T., Morimoto, Y. V., Kinoshita, M., Aldridge, P. D. and Namba, K. (2014). The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis. Sci Rep 4: 7579.
  9. Bai, F., Morimoto, Y. V., Yoshimura, S. D. J., Hara, N., Kami-ike, N., Namba, K. and Minamino, T. (2014). Assembly dynamics and the roles of FliI ATPase of the bacterial flagellar export apparatus. Sci Rep 4: 6528.
  10. Fukumura, T., Furukawa, Y., Kawaguchi, T., Saijo-Hamano, Y., Namba, K., Imada, K. and Minamino, T. (2014). Crystallization and preliminary X-ray analysis of the periplasmic domain of FliP, an integral membrane component of the bacterial flagellar type III protein-export apparatus. Acta Crystallogr F Struct Biol Commun 70(Pt 9): 1215-1218.
  11. Nakamura, S., Minamino, T., Kami-Ike, N., Kudo, S. and Namba, K. (2014). Effect of the MotB(D33N) mutation on stator assembly and rotation of the proton-driven bacterial flagellar motor. Biophysics (Nagoya-shi) 10: 35-41.
  12. Morimoto, Y. V., Ito, M., Hiraoka, K. D., Che, Y. S., Bai, F., Kami-Ike, N., Namba, K. and Minamino, T. (2014). Assembly and stoichiometry of FliF and FlhA in Salmonella flagellar basal body. Mol Microbiol 91(6): 1214-1226.
  13. Che, Y. S., Nakamura, S., Morimoto, Y. V., Kami-Ike, N., Namba, K. and Minamino, T. (2014). Load-sensitive coupling of proton translocation and torque generation in the bacterial flagellar motor. Mol Microbiol 91(1): 175-184.
  14. Castillo, D. J., Nakamura, S., Morimoto, Y. V., Che, Y. S., Kami-Ike, N., Kudo, S., Minamino, T. and Namba, K. (2013). The C-terminal periplasmic domain of MotB is responsible for load-dependent control of the number of stators of the bacterial flagellar motor. Biophysics (Nagoya-shi) 9: 173-181.
  15. Kinoshita, M., Hara, N., Imada, K., Namba, K. and Minamino, T. (2013). Interactions of bacterial flagellar chaperone-substrate complexes with FlhA contribute to co-ordinating assembly of the flagellar filament. Mol Microbiol 90(6): 1249-1261.
  16. Kawamoto, A., Morimoto, Y. V., Miyata, T., Minamino, T., Hughes, K. T., Kato, T. and Namba, K. (2013). Common and distinct structural features of Salmonella injectisome and flagellar basal body. Sci Rep 3: 3369.
  17. Bai, F., Che, Y. S., Kami-ike, N., Ma, Q., Minamino, T., Sowa, Y. and Namba, K. (2013). Populational heterogeneity vs. temporal fluctuation in Escherichia coli flagellar motor switching. Biophys J 105(9): 2123-2129.
  18. Moriya, N., Minamino, T., Ferris, H. U., Morimoto, Y. V., Ashihara, M., Kato, T. and Namba, K. (2013). Role of the Dc domain of the bacterial hook protein FlgE in hook assembly and function. Biophysics (Nagoya-shi) 9: 63-72.
  19. Kishikawa, J., Ibuki, T., Nakamura, S., Nakanishi, A., Minamino, T., Miyata, T., Namba, K., Konno, H., Ueno, H., Imada, K. and Yokoyama, K. (2013). Common evolutionary origin for the rotor domain of rotary ATPases and flagellar protein export apparatus. PLoS One 8(5): e64695.
  20. Takekawa, N., Terauchi, T., Morimoto, Y. V., Minamino, T., Lo, C. J., Kojima, S. and Homma, M. (2013). Na+ conductivity of the Na+-driven flagellar motor complex composed of unplugged wild-type or mutant PomB with PomA. J Biochem 153(5): 441-451.
  21. Martinez-Argudo, I., Veenendaal, A. K., Liu, X., Roehrich, A. D., Ronessen, M. C., Franzoni, G., van Rietschoten, K. N., Morimoto, Y. V., Saijo-Hamano, Y., Avison, M. B., Studholme, D. J., Namba, K., Minamino, T. and Blocker, A. J. (2013). Isolation of Salmonella mutants resistant to the inhibitory effect of Salicylidene acylhydrazides on flagella-mediated motility. PLoS One 8(1): e52179.
  22. Morimoto, Y. V., Nakamura, S., Hiraoka, K. D., Namba, K. and Minamino, T. (2013). Distinct roles of highly conserved charged residues at the MotA-FliG interface in bacterial flagellar motor rotation. J Bacteriol 195(3): 474-481.
  23. Ibuki, T., Uchida, Y., Hironaka, Y., Namba, K., Imada, K. and Minamino, T. (2013). Interaction between FliJ and FlhA, components of the bacterial flagellar type III export apparatus. J Bacteriol 195(3): 466-473.
  24. Uchida, Y., Minamino, T., Namba, K. and Imada, K. (2012). Crystallization and preliminary X-ray analysis of the FliH-FliI complex responsible for bacterial flagellar type III protein export. Acta Crystallogr Sect F Struct Biol Cryst Commun 68(Pt 11): 1311-1314.
  25. Monjaras Feria, J., Garcia-Gomez, E., Espinosa, N., Minamino, T., Namba, K. and Gonzalez-Pedrajo, B. (2012). Role of EscP (Orf16) in injectisome biogenesis and regulation of type III protein secretion in enteropathogenic Escherichia coli. J Bacteriol 194(22): 6029-6045.
  26. Hara, N., Morimoto, Y. V., Kawamoto, A., Namba, K. and Minamino, T. (2012). Interaction of the extreme N-terminal region of FliH with FlhA is required for efficient bacterial flagellar protein export. J Bacteriol 194: 5353–5360.
  27. Bai, F., Minamino, T., Wu, Z., Namba, K. and Xing, J. (2012). Coupling between switching regulation and torque generation in bacterial flagellar motor. Phys Rev Lett 108(17): 178105.
  28. Minamino, T., Kinoshita, M., Hara, N., Takeuchi, S., Hida, A., Koya, S., Glenwright, H., Imada, K., Aldridge, P. D. and Namba, K. (2012). Interaction of a bacterial flagellar chaperone FlgN with FlhA is required for efficient export of its cognate substrates. Mol Microbiol 83(4): 775-788.
  29. Shimada, M., Saijo-Hamano, Y., Furukawa, Y., Minamino, T., Imada, K. and Namba, K. (2012). Functional defect and restoration of temperature-sensitive mutants of FlhA, a subunit of the flagellar protein export apparatus. J Mol Biol 415(5): 855-865.
  30. Minamino, T., Kinoshita, M., Imada, K. and Namba, K. (2012). xMinamino, T., Kinoshita, M., Imada, K. and Namba, K. (2012). Interaction between FliI ATPase and a flagellar chaperone FliT during bacterial flagellar protein export. Mol Microbiol 83(1): 168-178. Mol Microbiol 83(1): 168-178.
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.