Improve Research Reproducibility
A Bio-protocol resource
Protocols
Biochemistry
Biophysics
Cancer Biology
Cell Biology
Developmental Biology
Immunology
Microbiology
Molecular Biology
Neuroscience
Plant Science
Stem Cell
Systems Biology
Articles and Issues
Current Issue
All Issues
Articles In Press
For Authors
Submission Procedure
Preparation Guidelines
Submit a Protocol
Editorial Process
Editorial Criteria
AI-Generated Material
Publishing Ethics
Competing Interests
Article Processing Charges
About
About Us
Aims & Scope
Advisors
Editors
Reviewers
Leadership and Management
Open Access Policy
Content Availability and Indexing
Journal Partners
Professional Memberships
Contact Us
Alerts
Advanced Search
Submit a Protocol
EN
EN - English
CN - 中文
CN
Log in / Sign up
Bio Page
Edit Profile
Home
Protocols
Biochemistry
Biophysics
Cancer Biology
Cell Biology
Developmental Biology
Immunology
Microbiology
Molecular Biology
Neuroscience
Plant Science
Stem Cell
Systems Biology
Articles and Issues
Current Issue
All Issues
Articles In Press
For Authors
Submission Procedure
Preparation Guidelines
Submit a Protocol
Editorial Process
Editorial Criteria
AI-Generated Material
Publishing Ethics
Competing Interests
Article Processing Charges
About
About Us
Aims & Scope
Advisors
Editors
Reviewers
Leadership and Management
Open Access Policy
Content Availability and Indexing
Journal Partners
Professional Memberships
Contact Us
Alerts
Submit a Protocol
Overview
Authored
(1)
YD
Yali Dou
Department of Pathology, University of Michigan, USA
Research fields
Stem cell
Peer-reviewed
Preprint
Reprogram Murine Epiblast Stem Cells by Epigenetic Inhibitors
Authors:
Hui Zhang
and
Yali Dou
,
date:
03/05/2017,
view:
6549,
Q&A:
0
Pluripotent stem cells in the naïve state are highly useful in regenerative medicine and tissue engineering. A robust reprogramming of the primed murine Epiblast Stem Cells (EpiSCs) to naïve pluripotency is feasible via chemical-only approach. This protocol described a method to reprogram murine EpiSCs by MM-401 treatment, which blocks histone H3K4 methylation by MLL1/KMT2A.
More >
Find out more
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.