EF
Emma Fernández-Crespo
  • Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, ESTCE. Universitat Jaume I, Spain
Research fields
  • Plant science
Putrescine Biosynthesis Inhibition in Tomato by DFMA and DFMO Treatment
This protocol can be used to inhibit the biosynthesis of polyamines, specifically putrescine, in tomato plants grown with NH4+ as a solely N source. In general, polyamines are positively charged small metabolites implicated in physiological processes, including organogenesis, embryogenesis, floral initiation and development, leaf senescence, pollen tube growth, fruit development and ripening and participate in the response to abiotic and biotic stresses (Tiburcio et al., 2014). Polyamines are synthesized from amino acids by decarboxylation of ornithine or arginine by ornithine decarboxylase (ODC) or arginine decarboxylase (ADC), respectively (Walters, 2003). Tomato plants grown with NH4+ as the sole N source presented an increase of putrescine content in leaves (Fernández-Crespo et al., 2015). To assess the importance of putrescine accumulation, DL-α-(Difluoromethyl)arginine (DFMA) and DL-α-(Difluoromethyl)ornithine (DFMO), inhibitors of putrescine synthesis, were used as irreversible inhibitors of ADC and ODC enzymes, respectively (Fallon and Phillips, 1988), with the purpose of reducing cellular putrescine accumulation induced by NH4+ nutrition.

The inhibitor solution containing 2 mM DFMA and 5 mM DFMO was applied directly to each pot during the week prior to sample collection. Putrescine content was reduced by 35.3% in tomato plants grown with NH4+.
Quantification of Callose Deposition in Plant Leaves
Callose is an amorphous homopolymer, composed of β-1, 3-glucan, which is widespread in higher plants. Callose is involved in multiple aspects of plant growth and development. It is synthetized in plants at the cell plate during cytokinesis, in several stages during pollen development and is deposited at plasmodesmata to regulate the cell-to-cell movement of molecules. Moreover, it is produced in response to multiple biotic and abiotic stresses (Chen and Kim, 2009). Callose is considered to act as a physical barrier by strengthening the plant cell well to slow pathogen infection and to contribute to the plant’s innate immunity. Thus the callose staining method is useful to quantify activity of plant immunity. In addition, this staining can be used to visualize structures in plant tissue, where the callose may be implied whether during the development of plants or response against pathogen infection. This method is based on the use of methyl blue which reacts with (1→3)-β-glucans to give a brilliant yellow fluorescence in UV light. Moreover, calcofluor stains chitin present in fungal cell membranes and also binds to cellulose at locations where the cuticle is damaged.
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.