Published: Vol 8, Iss 12, Jun 20, 2018 DOI: 10.21769/BioProtoc.2897 Views: 10766
Reviewed by: Deepika SuriAlexandra GrosAnonymous reviewer(s)
Protocol Collections
Comprehensive collections of detailed, peer-reviewed protocols focusing on specific topics
Related protocols
Construction of Activity-based Anorexia Mouse Models
Maria Consolata Miletta and Tamas L. Horvath
Aug 5, 2023 1017 Views
Binging from Food to Alcohol: A Sequential Interaction Between Binging Behaviors in Male Wistar Rats
Sergio Cuesta-Martínez [...] Cruz Miguel Cendán
Aug 5, 2023 756 Views
The Mouse Social Frailty Index (mSFI): A Standardized Protocol
Charles W. Collinge [...] Alessandro Bartolomucci
Apr 20, 2025 926 Views
Abstract
The sense of smell allows animals to discriminate a large number of volatile environmental chemicals. Such chemical signaling modulates the behavior of several species that depend on odorant compounds to locate food, recognize territory, predators, and toxic compounds. Olfaction also plays a role in mate choice, mother-infant recognition, and social interaction among members of a group. A key assay to assess the ability to smell odorants is the buried food-seeking test, which checks whether the food-deprived mice can find the food pellet hidden beneath the bedding in the animal’s cage. The main parameter observed in this test is the latency to uncover a small piece of chow, cookie, or other pleasant food, hidden beneath a layer of cage bedding, within a limited amount of time. It is understood that food-restricted mice which fail to use odor cues to locate food within a given time period are likely to have deficits in olfactory abilities. Investigators who used the buried food test, or versions of the buried food test, demonstrated that it is possible to evaluate olfactory deficits in different models of murine studies (Alberts and Galef, 1971; Belluscio et al., 1998; Luo et al., 2002; Li et al., 2013). We have recently used this assay to demonstrate that olfactory-specific Ric-8B knock-out mice (a guanine nucleotide exchange factor that interacts with olfactory-specific G-protein) show an impaired sense of smell (Machado et al., 2017). Here we describe the protocol of the buried food-seeking test, as adopted in our assays.
Keywords: Buried food-seeking testBackground
The buried food-seeking test was first described in 1971 (Alberts and Galef, 1971). Since then, additional versions of the test have been described. This test has been used to investigate the consequences of olfactory impairment in a variety of situations, such as: analysis of the effects of olfactory function on the performance of female mice in social behavior towards male conspecifics (Yamada et al., 2001), the discrimination of the participation of both the main olfactory system and the vomeronasal organ in behavior (Del Punta et al., 2002) or in animal models of hyposulphataemia, a disturbance in sulphate metabolism (Dawson et al., 2005). It was also used to assess sociability and cognitive function in neuronal cell adhesion molecule (Nrcam) null mice (Moy et al., 2009), to study the effects of the selective non-imidazole histamine H3 receptor antagonist in anxiety and depression-like disorders (Bahi et al., 2014), to analyze the role of endocannabinoids in olfactory sensory neurons (Hutch et al., 2015), and others. There are variations in the buried food test methods used in these studies. For example, some authors used pre-test acclimation in the testing cage to reduce novelty-induced exploratory activity during the olfaction test, while others did not. It is important to note that this acclimation can help in decreasing response variability within groups. In our previous work, we used the buried food test, in association with other motivational, behavioral, and cellular tests, to determinate whether the sense of smell is impaired in olfactory-specific Ric-8B knock-out mice (Machado et al., 2017). The present manuscript describes the protocol of the buried food-seeking test as adopted in our previous assays, in order to observe aspects of olfactory deficits in mice.
Materials and Reagents
Equipment
Procedure
Data analysis
Notes
Acknowledgments
This work was supported by Grants from Fundação de Amparo à Pesquisa do Estado de São Paulo [FAPESP; 2016/24471-0 (B.M.), and 2012/24640-6 (C.F.M.)]. We thank Silvânia S. P. Neves, Renata Spalutto Fontes, and Flávia de Moura Prates Ong for technical assistance in our animal facility. This protocol was adapted from previous works (Alberts and Galef, 1971; Li et al., 2013).
Competing interests
The authors declare no competing financial interests.
References
Article Information
Copyright
© 2018 The Authors; exclusive licensee Bio-protocol LLC.
How to cite
Readers should cite both the Bio-protocol article and the original research article where this protocol was used:
Category
Neuroscience > Behavioral neuroscience > Animal model
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.
Tips for asking effective questions
+ Description
Write a detailed description. Include all information that will help others answer your question including experimental processes, conditions, and relevant images.
Share
Bluesky
X
Copy link