Protocols in Current Issue
Protocols in Past Issues
0 Q&A 1538 Views Aug 5, 2022

There is an urgent need for the development of brain drug delivery carriers based on middle-sized or macromolecules, to which in vitro blood-brain barrier (BBB) models are expected to contribute significantly through evaluation of BBB permeability. As part of efforts to develop such models, we have been working on human conditionally immortalized cell-based multicellular spheroidal BBB models (hiMCS-BBB models), and we herein introduce the model development protocol. Briefly, astrocytes are first seeded in an ultra-low attachment 3D cell culture plate, to make the central core (Day 0). Next, pericytes are added over the core, to form an outer layer (Day 1). Then, brain microvascular endothelial cells are further added to each well, to create the outmost monolayer serving as the BBB (Day 2). Finally, the spheroids cultured for two days (on Day 4) can be used for assays of interest (e.g., antibody permeability assays). Neither special equipment nor techniques are required to produce hiMCS-BBB models. Therefore, the protocol presented here will not only facilitate the model sharing among the BBB community but also provide some technical clues contributing to the development of similar MCS-BBB models using other cell sources, such as primary or iPS-derived BBB cells.

Graphical abstract:

0 Q&A 2161 Views Apr 20, 2022

Targeting receptor-mediated transcytosis (RMT) is a successful strategy for drug delivery of biologic agents across the blood-brain barrier (BBB). The recent development of human BBB organoid models is a major advancement to help characterize the mechanisms of RMT and thus accelerate the design of brain delivery technologies. BBB organoids exhibit self-organization, which resembles the architecture of the neurovascular unit, and low paracellular permeability, due to the formation of tight junctions between endothelial cells. However, current methods of organoid generation have low throughput, exhibit substantial heterogeneity across experiments, and require extensive manual handling. These limitations prevent the use of BBB organoids as a screening tool for discovery and optimization of therapeutic molecules. In this protocol, we use hydrogel-based arrays to generate human BBB organoids, with a 35-fold increase in organoid yield as compared to previous protocols using 96-well plates. We incubate BBB organoid arrays with monoclonal antibody-based constructs and use a custom semi-automated imaging assay to assess RMT within the organoid core. The experimental and analytical tools described in this protocol provide a scalable platform that can be incorporated in the early stages of drug discovery to accelerate the development and optimization of brain delivery technologies to cross the BBB.

1 Q&A 3367 Views Jun 20, 2021

Basal forebrain cholinergic neurons (BFCNs) regulate circuit dynamics underlying cognitive processing, including attention, memory, and cognitive flexibility. In Alzheimer’s disease and related neurodegenerative conditions, the degeneration of BFCNs has long been considered a key player in cognitive decline. The cholinergic system thus represents a key therapeutic target. A long-standing obstacle for the development of effective cholinergic-based therapies is not only the production of biologically active compounds but also a platform for safe and efficient drug delivery to the basal forebrain. The blood-brain barrier (BBB) presents a significant challenge for drug delivery to the brain, excluding approximately 98% of small-molecule biologics and nearly 100% of large-molecule therapeutic agents from entry into the brain parenchyma. Current modalities to achieve effective drug delivery to deep brain structures, such as the basal forebrain, are particularly limited. Direct intracranial injection via a needle or catheter carries risks associated with invasive neurosurgery. Intra-arterial injection of hyperosmotic solutions or therapeutics modified to penetrate the BBB using endogenous transport systems lack regional specificity, which may not always be desirable. Intranasal, intrathecal, and intraventricular administration have limited drug distribution beyond the brain surface. Here, we present a protocol for non-invasively, locally, and transiently increasing BBB permeability using MRI-guided focused ultrasound (MRIgFUS) in the murine basal forebrain for delivery of therapeutic agents targeting the cholinergic system. Ongoing work in preclinical models and clinical trials supports the safety and feasibility of MRIgFUS-mediated BBB modulation as a promising drug delivery modality for the treatment of debilitating neurological diseases.

0 Q&A 4805 Views Aug 5, 2020
In order for the brain to function properly, a carefully orchestrated homeostasis must be maintained. To help regulate this delicate balance, the brain has developed a highly selective blood-brain barrier (BBB). Under normal conditions, the BBB excludes harmful blood-borne material from the brain parenchyma. However, numerous neuropathological conditions can disrupt this barrier, causing BBB permeability and subsequent CNS dysfunction. Understanding the mechanisms involved in BBB permeability are essential to elucidating the pathology of various neurological disorders as well as identifying methods for drug delivery to the CNS. Here, we describe several in vivo methods to measure BBB permeability in mice using an array of diverse sized tracers including exogenous 376 Da fluorescein salt, 66.5 kDa bovine serum albumin, and 70 kDa dextran as well as endogenous 160 kDa mouse IgG. When administered intravenously, these substances are excluded from a healthy brain by the BBB. However, BBB dysfunction can allow entry of these tracers into the brain and this accumulation can be measured using spectrophotometry, fluorescent microscopy, and immunohistochemistry. We also describe a method to induce BBB permeability using Clostridium perfringens epsilon toxin. Finally, we include a short discussion about the advantages and disadvantages of each method and their appropriate downstream applications.
0 Q&A 6419 Views Dec 20, 2019
Multiple sclerosis (MS) is the common demyelinating disease of human central nervous system. Among mouse models available to study MS, including the cuprizone application and lysolecithin-injection models, experimental autoimmune encephalomyelitis (EAE) model is widely used so that chronic EAE model of C57BL/6J can reflect the autoimmune pathogenesis of MS well. Here we introduce the EAE model based on C57BL/6J mice, which is generated by injection of myelin oligodendrocyte glycoprotein 35-55 (MOG 35-55) as an antigen. After immunization with complete Freund's adjuvant, clinical signs and changes in body weight are observed one or two weeks later. The EAE model will continue to be useful for development of therapeutics for MS.
0 Q&A 12688 Views Sep 5, 2017
Studying liquid-liquid phase separation (LLPS) of proteins provides key insights into the biogenesis of membraneless organelles and pathological protein aggregation in disease. We have established a protocol for inducing the phase separation of arginine-rich peptides, which allows for studying their molecular determinants and dynamics (Boeynaems et al., 2017).
0 Q&A 8075 Views Sep 5, 2017
The prevalence of neurodegenerative diseases is increasing worldwide. Cerebrovascular disorders and/or conditions known to affect brain vasculature, such as diabetes, are well-known risk factors for neurodegenerative diseases. Thus, the evaluation of the brain vasculature is of great importance to better understand the mechanisms underlying brain damage. We established a protocol for the isolation of brain vessels from rodents. This is a simple, non-enzymatic isolation protocol that allows us to perform comparative studies in different animal models of disease, helping understand the impact of several pathological conditions on brain vasculature and how those alterations predispose to neurodegenerative conditions.
0 Q&A 10253 Views May 5, 2015
After stroke and brain contusion, serum proteins extravasate into nerve tissue through disrupted blood-brain barrier (BBB). Because extravasations of serum proteins result in vasogenic brain edema, serum albumin level in the brain is an indicator of BBB disruption and brain edema after brain insults. In this protocol, extravasation of endogenous albumin is measured in the damaged mouse brain, which would be valuable in the evaluation of vasogenic brain edema formation (Michinaga et al., 2014).

We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.