Protocols in Current Issue
Protocols in Past Issues
0 Q&A 662 Views Sep 5, 2022

Nucleic acids in living organisms are more complex than the simple combinations of the four canonical nucleotides. Recent advances in biomedical research have led to the discovery of numerous naturally occurring nucleotide modifications and enzymes responsible for the synthesis of such modifications. In turn, these enzymes can be leveraged towards toolkits for DNA and RNA manipulation for epigenetic sequencing or other biotechnological applications. Here, we present the protocol to obtain purified 5-hydroxymethylcytosine carbamoyltransferase enzymes and the associated assays to convert 5-hydroxymethylcytosine to 5-carbamoyloxymethylcytosine in vitro. We include detailed assays using DNA, RNA, and single nucleotide/deoxynucleotide as substrates. These assays can be combined with downstream applications for genetic/epigenetic regulatory mechanism studies and next-generation sequencing purposes.

0 Q&A 1728 Views May 5, 2022

The receptor binding domain (RBD) of the spike protein of SARS-CoV-2 binds angiotensin converting enzyme-2 (ACE-2) on the surface of epithelial cells, leading to fusion, and entry of the virus into the cell. This interaction can be blocked by the binding of llama-derived nanobodies (VHHs) to the RBD, leading to virus neutralisation. Structural analysis of VHH-RBD complexes by X-ray crystallography enables VHH epitopes to be precisely mapped, and the effect of variant mutations to be interpreted and predicted. Key to this is a protocol for the reproducible production and crystallization of the VHH-RBD complexes. Based on our experience, we describe a workflow for expressing and purifying the proteins, and the screening conditions for generating diffraction quality crystals of VHH-RBD complexes. Production and crystallization of protein complexes takes approximately twelve days, from construction of vectors to harvesting and freezing crystals for data collection.

0 Q&A 1550 Views May 5, 2022

Based on previous in-depth characterisation, aldehyde dehydrogenases (ALDH) are a diverse superfamily of enzymes, in terms of both structure and function, present in all kingdoms of life. They catalyse the oxidation of an aldehyde to carboxylic acid using the cofactor nicotinamide adenine dinucleotide (phosphate) (NAD(P)+), and are often not substrate-specific, but rather have a broad range of associated biological functions, including detoxification and biosynthesis. We studied the structure of ALDHTt from Thermus thermophilus, as well as performed its biochemical characterisation. This allowed for insight into its potential substrates and biological roles.

In this protocol, we describe ALDHTt heterologous expression in E. coli, purification, and activity assay (based on Shortall et al., 2021). ALDHTt was first copurified as a contaminant during caa3-type cytochrome oxidase isolation from T. thermophilus. This recombinant production system was employed for structural and biochemical analysis of wild-type and mutants, and proved efficient, yielding approximately 15–20 mg/L ALDHTt. For purification of the thermophilic his-tagged ALDHTt, heat treatment, immobilized metal affinity chromatography (IMAC), and gel filtration chromatography were used. The enzyme activity assay was performed via UV-Vis spectrophotometry, monitoring the production of reduced nicotinamide adenine dinucleotide (NADH).

Graphical abstract:

Flow chart outlining the steps in ALDHTt expression and purification, highlighting the approximate time required for each step.

0 Q&A 1250 Views Mar 20, 2022

The human proteins used in most biochemical studies are commonly obtained using bacterial expression. Owing to its relative simplicity and low cost, this approach has been extremely successful, but is inadequate for many proteins that require the mammalian folding machinery and posttranslational modifications (PTMs) for function. Moreover, the expressed proteins are typically purified using N- and/or C-terminal affinity tags, which are often left on proteins or leave non-native extra amino acids when removed proteolytically. Many proteins cannot tolerate such extra amino acids for function. Here we describe a protein production method that resolves both these issues. Our method combines expression in human Expi293F cells, which grow in suspension to high density and can process native PTMs, with a chitin-binding domain (CBD)-intein affinity purification and self-cleavable tag, which can be precisely removed after purification. In this protocol, we describe how to clone a target gene into our specifically designed human cell expression vector (pJCX4), and how to efficiently transfect the Expi293F cells and purify the expressed proteins using a chitin affinity resin.

Graphic abstract:

1 Q&A 2385 Views Jan 5, 2022

Mechanisms that target and destroy foreign nucleic acids are major barriers to horizontal gene transfer (HGT) in prokaryotes. Amongst them, restriction-modification (R-M) systems are found in ≥75% of the sequenced genomes in Bacteria and Archaea. Due to their high target sequence specificity and potent nucleolytic activity, R-M systems are used as a paradigm to elucidate the mechanisms of DNA binding and cleavage. Since these enzymes modulate HGT, they are one of the machineries implicated in the ability of a bacterium to gain antibiotic resistance. This protocol provides a detailed purification strategy for the Type IV restriction endonuclease SauUSI from Staphylococcus aureus. This protocol eventually leads to ≥95% purity of protein which can then be used for crystallographic and biochemical purposes.

Graphic abstract:

Workflow for purification of SauUSI.

0 Q&A 3177 Views Oct 5, 2021

With the recent availability of the SARS-CoV-2 mRNA-based vaccines, public attention has been drawn to this new technology and how it may be applied to other indications. Temporal activation of key hepatic regenerative pathways can induce liver regeneration, overcoming the lack of donor organs for liver transplantation and ineffectiveness of alternative treatments. Recombinant protein therapies and genetic therapies that target these pathways require frequent and repeated injections or, when integrated into the genome, may lead to deleterious effects. In contrast, nucleoside-modified mRNA encapsulated in lipid nanoparticles (mRNA-LNP) are non-integrative and induce transient yet robust expression of proteins that could serve as an ideal therapeutic tool to treat specific liver diseases. For instance, our recent publication in Nature Communications used mRNA-LNP to express hepatic mitogens, hepatocyte growth factor, and epidermal growth factor to induce liver regeneration following both acute and chronic liver injuries. Initial testing with firefly luciferase mRNA-LNP transfection and in vivo imaging confirmed specific hepatotropic delivery. In this protocol, we describe in detail the necessary steps to deliver mRNA-LNP to the murine liver and, following intravenous injection of eGFP mRNA-LNP, verify transfection efficiency using flow cytometry and liver cell specificity using immunofluorescence analyses. This procedure presents an unprecedented tool that can be customized with mRNA-LNP encoding any protein of interest to be expressed by virtually all hepatocytes, ~70% endothelial cells, and ~40% Kupffer cells for promoting liver function and/or regeneration.

Graphic abstract:

Experimental Design of mRNA-LNP IV Injection and Analysis of Liver Cell Specificity and Efficiency of Transfection (Created with

0 Q&A 2113 Views Sep 20, 2021

Iron-sulfur proteins are ubiquitous among all living organisms and are indispensable for almost all metabolic pathways ranging from photosynthesis, respiration, nitrogen, and carbon dioxide cycles. The iron-sulfur clusters primarily serve as electron acceptors and donors and transfer electrons to active sites of various enzymes, thus driving the energy metabolism. Prokaryotes like E. coli have ISC and SUF pathways that help in the assembly and maturation of iron-sulfur proteins. These iron-sulfur proteins, especially with [4Fe-4S] clusters, are highly sensitive to molecular oxygen, and it would be advantageous if the de novo proteins and native proteins having iron-sulfur binding sites are expressed and isolated under anaerobic conditions. Bacterially assembled iron-sulfur proteins, when isolated and purified anaerobically, exhibit improved biochemical and biophysical stabilities in comparison to the counterparts expressed and purified aerobically and reconstituted under anaerobic conditions. This protocol outlines the expression and purification of the artificial protein, Coiled-Coil Iron-Sulfur (CCIS). It may be deployed to both natural and artificial [4Fe-4S] proteins when heterologously expressed in E. coli.

0 Q&A 2457 Views Sep 20, 2021

Cell-free translation is a powerful technique for in vitro protein synthesis. While cell-free translation platforms prepared from bacterial, plant, and mammalian cells are commercially available, yeast-based translation systems remain proprietary knowledge of individual labs. Here, we provide a detailed protocol for simple, fast, and cost-effective preparation of the translation-competent cell-free extract (CFE) from budding yeast. Our protocol streamlines steps combined from different procedures published over the last three decades and incorporates cryogenic lysis of yeast cells to produce a high yield of the translationally active material. We also describe techniques for the validation and troubleshooting of the quality and translational activity of the obtained yeast CFE.

Graphic abstract:

The flow of Cell-Free Extract (CFE) preparation procedure.

0 Q&A 6077 Views Aug 20, 2021

pET expression plasmids are widely used in the biotechnology, biopharmaceutical, and basic research sectors for the production of recombinant proteins. Typically, they are used off-the-shelf because they support high production titers; however, we have identified two design flaws in many pET plasmids that limit their production capacity. We used modern methods of DNA assembly and directed evolution to identify improved designs for these modules and demonstrated that these designs support higher protein production yields. Herein, we present two PCR protocols for implementing the designs and increasing protein production from existing pET expression plasmids.

Graphic abstract:

A simple workflow for implementing novel designs in pET expression plasmids.

0 Q&A 2146 Views Aug 20, 2021

Flow cytometry is a powerful analytical technique that is increasingly used in scientific investigations and healthcare; however, it requires time-consuming, multi-step sample procedures, which limits its use to specialized laboratories. In this study, we propose a new universal one-step method in which white blood cell staining and red blood cell lysis are carried out in a single step, using a gentle lysis solution mixed with fluorescent antibody conjugates or probes in a dry or liquid format. The blood sample may be obtained from a routine venipuncture or directly from a fingerprick, allowing for near-patient analysis. This procedure enables the analysis of common white blood cell markers as well as markers related to infections or sepsis. This simpler and faster protocol may help to democratize the use of flow cytometry in the research and medical fields.

Graphic abstract:

One-step White Blood Cell Extracellular Staining Method for Flow Cytometry.

We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.