Plant Science


Protocols in Current Issue
Protocols in Past Issues
0 Q&A 3089 Views Sep 20, 2021

Identification of novel genes and their functions in rice is a critical step to improve economic traits. Agrobacterium tumefaciens-mediated transformation is a proven method in many laboratories and widely adopted for genetic engineering in rice. However, the efficiency of gene transfer by Agrobacterium in rice is low, particularly among japonica and indica varieties. In this protocol, we elucidate a rapid and highly efficient protocol to transform and regenerate transgenic rice plants through important key features of Agrobacterium transformation and standard regeneration media, especially enhancing culture conditions, timing, and growth hormones. With this protocol, transformed plantlets from the embryogenetic callus of the japonica cultivar ‘Taichung 65’ may be obtained within 90 days. This protocol may be used with other japonica rice varieties.

1 Q&A 4202 Views Jan 5, 2021
Cell suspension cultures have been studied for decades to produce natural molecules. However, the difficulty in generating stably transformed cell lines has limited their use to produce high value chemicals reproducibly and in elevated quantities.

In this protocol, a method to stably transform and maintain Arabidopsis cell suspension cultures is devised and presented in detail. Arabidopsis cell cultures were directly transformed with A. tumefaciens for the overexpression of the CORONATINE INSENSITIVE 1 (COI1) jasmonate receptor. Cell cultures were established after transformation and continuously maintained and tested for the overexpression of COI1. The protocol was also previously used to silence Arabidopsis peroxidases and allows for long term maintenance of transformed cells. Details on culture maintenance, both in liquid and solid media are provided, alongside with evidence of protein expression to confirm transformation.

The system described provides a powerful tool for synthetic biology to study signaling independent of developmental control and to obtain metabolites of interest for the biotechnological and medical sectors.

1 Q&A 3857 Views Nov 20, 2020

Sweet basil (Ocimum basilicum) is a popular herb with high economic value and is currently threatened by a severe oomycete disease. An efficient transformation method is a prerequisite for gene functional analysis to accelerate molecular breeding and deploy effective disease management strategies, and breeding through genetic engineering. Here we present a detailed protocol for a highly efficient Agrobacterium tumefaciens-mediated transformation method for sweet basil, which was established based on a previously reported method by other researchers, with modifications on several aspects, including growth of sweet basil, age of plants used for explants, preparation and concentration of Agrobacteria. This protocol allows researchers in academia and agroindustry to generate transgenic sweet basil plants in an easy, quick and highly reproducible manner. In addition, this protocol may be applicable to transform other species within the genus Ocimum.

0 Q&A 7269 Views Sep 5, 2020
Genetic transformation is crucial for both investigating gene functions and for engineering of crops to introduce new traits. Rice (Oryza sativa L.) is an important model in plant research, since it is the staple food for more than half of the world’s population. As a result, numerous transformation methods have been developed for both indica and japonica rice. Since breeders continuously develop new rice varieties, transformation protocols have to be adapted for each new variety. Here we provide an optimized transformation protocol with detailed tips and tricks for a new African variety Komboka using immature embryos. In Komboka, we obtained an apparent transformation rate of up to 48% for GUS/GFP reporter gene constructs using this optimized protocol. This protocol is also applicable for use with other elite indica rice varieties.
0 Q&A 6005 Views Dec 20, 2018
Cell-to-cell movement of proteins through plasmodesmata is a widely-established mechanism for intercellular signaling in plants. Current techniques to study intercellular protein translocation rely on single-cell transformation using particle bombardment or transgenic lines expressing photo-inducible fluorophores. The method presented here allows visualization and objective quantification of (effector) protein movement between N. benthamiana leaf cells. Agroinfiltration is performed using a single binary vector encoding a GFP-tagged protein of interest that is either mobile or non-mobile (MP; non-MP), together with an ER-anchored mCherry. Upon creation of mosaic-like transformation patterns, cell-to-cell movement of the MP can be followed by monitoring translocation of the GFP signal from mCherry labeled transformed cells into neighboring non-transformed cells. This process can be visualized using confocal microscopy and quantified following protoplast isolation and flow cytometric cell analysis. This method overcomes the limitations of existing methods as it allows rapid and objective quantification of protein translocation without the need of creating transgenic plants.
0 Q&A 7993 Views Nov 20, 2017
Olive (Olea europaea L.) is one of the most important oil crops in the Mediterranean basin. Biotechnological improvement of this species is hampered by the recalcitrant nature of olive tissue to regenerate in vitro. In previous investigations, our group has developed a reliable Agrobacterium-mediated transformation protocol using olive somatic embryos as explants (Torreblanca et al., 2010). Embryogenic cultures derived from radicles of matured zygotic embryos are infected with Agrobacterium tumefaciens, AGL1 strain, containing a binary plasmid with the gene of interest and the nptII selection gene. After a meticulous selection procedure, carried out using solid and liquid media supplemented with paromomycin, the putative transformed lines are established. A preliminary confirmation of their transgenic nature is carried out through PCR amplification. Afterwards, plants can be obtained through an efficient regeneration protocol, whose main characteristics are the use of a low-ionic-strength mineral formulation, a phase in liquid medium for synchronization of cultures and the use of semi-permeable cellulose acetate membranes for embryo maturation (Cerezo et al., 2011). Final confirmation of transgene insertion is carried out through Southern or Northern analysis using leaf samples of regenerated plants.
0 Q&A 14014 Views Apr 5, 2017
CRISPR/Cas9 system is a recently developed genome editing tool, and its power has been demonstrated in many organisms, including some plant species (Wang et al., 2016). In eukaryotes, the Cas9/gRNA complexes target genome sites specifically and cleave them to produce double-strand breaks (DSBs), which can be repaired by non-homologous end joining (NHEJ) pathway (Wang et al., 2016). Since NHEJ is error prone, mutations are thus generated. In plants, delivery of genome editing reagents is still challenging. In this protocol, we detail the procedure of a virus-based gRNA delivery system for CRISPR/Cas9 mediated plant genome editing (VIGE). This method offers a rapid and efficient way to deliver gRNA into plant cells, especially for those that are recalcitrant to transformation with Agrobacterium.
0 Q&A 11231 Views Mar 5, 2017
Since the discovery of the CRISPR (clustered regularly interspaced short palindromic repeats)-associated protein (Cas) as an efficient tool for genome editing in plants (Li et al., 2013; Shan et al., 2013; Nekrasov et al., 2013), a large variety of applications, such as gene knock-out, knock-in or transcriptional regulation, has been published. So far, the generation of multiple mutants in plants involved tedious crossing or mutagenesis followed by time-consuming screening of huge populations and the use of the Cas9-system appeared a promising method to overcome these issues. We designed a binary vector that combines both the coding sequence of the codon optimized Streptococcus pyogenes Cas9 nuclease under the control of the Arabidopsis thaliana UBIQUITIN10 (UBQ10)-promoter and guide RNA (gRNA) expression cassettes driven by the A. thaliana U6-promoter for efficient multiplex editing in Arabidopsis (Yan et al., 2016). Here, we describe a step-by-step protocol to cost-efficiently generate the binary vector containing multiple gRNAs and the Cas9 nuclease based on classic cloning procedure.
0 Q&A 16407 Views Feb 20, 2017
CRISPR/Cas9-mediated genome editing relies on a guide RNA (gRNA) molecule to generate sequence-specific DNA cleavage, which is a prerequisite for gene editing. Here we establish a method that enables production of gRNAs from any promoters, in any organisms, and in vitro (Gao and Zhao, 2014). This method also makes it feasible to conduct tissue/cell specific gene editing.
0 Q&A 10374 Views Jan 20, 2016
Transgenic soybean roots of composite plants are a powerful tool to rapidly test the function of genes and activity of gene promoters. No tissue culture is needed, thus avoiding loss of valuable material due to contamination. This is a simple technique that requires less training and care than tissue culture techniques. Furthermore, it takes less time to produce transgenic roots than techniques using sterile tissue culture. If the transgenic roots are to be challenged with a pathogen, there is no need to produce axenic pathogens with this technique, because sterile tissue culture medium is not used. Therefore, there is no agar medium on which contaminants may grow resulting in obscured results or diseased roots. Here, we describe the production of transgenic soybean roots on 7-day-old soybean seedlings using Agrobacterium rhizogenes. These composite plants may be grown in the greenhouse for further experimentation, such as to determine the effect of gene expression on nematode development.

We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.