Cell Biology


Protocols in Current Issue
Protocols in Past Issues
0 Q&A 3404 Views Aug 5, 2020
The organization and distribution of proteins, lipids, and nucleic acids in eukaryotic cells is an essential process for cell function. Retrograde trafficking from the plasma membrane to the Golgi and endoplasmic reticulum can greatly modify cell membrane composition and intracellular protein dynamics, and thus typifies a key sorting step. However, methods to efficiently quantify the extent or kinetics of these events are currently limited. Here, we describe a novel quantitative and effectively real-time single-cell flow cytometry assay to directly measure retrograde membrane transport. The assay takes advantage of the well-known retrograde trafficking of cholera toxin engineered with split-fluorescent proteins to generate novel tools for immediate monitoring of intracellular trafficking. This approach will greatly extend the ability to study the underlying biology of intracellular membrane trafficking, and how trafficking systems can adapt to the physiologic needs of different cell types and cell states.
0 Q&A 3827 Views Dec 20, 2019
Functional activities of many transmembrane proteins are controlled by their endocytosis. One of the most studied experimental models is the epidermal growth factor (EGF) receptor (EGFR). However, endocytic trafficking of EGFR has been predominantly analyzed using labeled EGF, whereas quantitative analyses of the endocytosis of the receptor itself have been sparse. The fluorescence microscopy methods described here are designed to directly quantify EGFR internalization in living cells without labeled EGFR ligands or antibodies. These methods utilize an engineered EGFR chimera in which the fluorogen activating protein (FAP) is fused to the receptor extracellular domain (FAP-EGFR). Binding of malachite green (MG) based dyes to FAP results in a strong far-red fluorescence of MG, thus efficiently labeling FAP-EGFR. In particular, binding of the cell impermeant MG-Bis-SA dye to FAP produces the pH-sensitive dual-excitation fluorescence, which allows differentiation of the cell-surface and internalized pools of FAP-EGFR. Two modifications of the methodology are described: 1) single-cell three-dimensional confocal imaging; and 2) high-throughput assay in multi-well plates. These methodologies can be adopted to study endocytosis of any other transmembrane protein extracellularly tagged with FAP.
0 Q&A 3920 Views Nov 20, 2019
Merocytophagy (“mero”, Greek for partial; “cytophagy” for cell eating) is a process by which cells acquire microbes and cytosolic material through phagocytosis of a small portion of neighboring cells upon cell-cell contact. Cell-cell contact dependent transfer events can be assessed through co-incubation of differently labeled cells. With these assays, it is difficult to analyze the recipient cells by microscopy or bacterial burden within only recipient cells. Therefore, we established a synchronized transfer assay that allows for recipient cells to be isolated from donor cells following transfer events at a high purity. Here, we present this assay in context of bacterial infections and cytosolic cellular staining. With this protocol, mechanisms of cell-cell contact dependent transfer events and the events following merocytophagy can easily be investigated.
0 Q&A 8496 Views Feb 20, 2019
Efficiency of drug and gene delivery via nonviral vehicles is contingent on proper cellular uptake and intracellular release. Further, various cargos, such as nucleases for gene editing or inhibitors for endosomal receptors, require transport to specific compartments of the cell. Hence, characterization of cellular uptake and endocytic pathways is crucial for the optimization of any nanoparticle-mediated intracellular delivery system. Previous work on endocytic pathways looks at the effect of various pathway inhibitors on the uptake efficiency of nanoparticles carrying fluorescently-labeled cargo. While this helps attribute particle uptake to specific pathways like caveolae-mediated or clathrin-mediated endocytosis, this does not provide a holistic picture of the delivery process. Here, we provide a general protocol that combines systematic studies of inhibitor effects on efficiency with quantification of particle-induced cell membrane permeability. By applying this methodology to a nucleic acid delivery system, for example a helical polypeptide-based nanoparticle for plasmid and guide RNA delivery, we gain understanding of the endocytic mechanisms and cell uptake for intelligent design of intracellular delivery.
0 Q&A 5166 Views Sep 5, 2018
Microglia are professional phagocytes in the brain and deficiency in their phagocytic activity plays an important role in Parkinson’s disease. This protocol mainly describes the phagocytosis assay for uptake of α-synuclein preformed fibrils, a pathologic form of α-synuclein, by primary microglia.

We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.