Molecular Biology


Categories

Protocols in Current Issue
Protocols in Past Issues
0 Q&A 269 Views Jan 20, 2023

In this study, we introduce a detailed protocol for the preparation of DNA-assembled GRS-DNA-copper sulfide (CuS) nanodandelion, a multifunctional theranostics nanoparticle. Using transmission electron microscope (TEM) and dynamic light scattering techniques, we characterize the physicochemical property of DNA-assembled GRS-DNA-CuS nanodandelions and their dissociation property after the first near-infrared (NIR) light irradiation. In addition, we systematically monitor the processes of tumor accumulation and uniform intratumoral distribution (UITD) of ultrasmall CuS photothermal agents (PAs), which are dissociated from GRS-DNA-CuS nanodandelions, by Raman imaging and photoacoustic imaging, respectively. The UITD of the dissociated ultrasmall CuS PAs can enhance the therapeutic efficiency of photothermal treatment under the second NIR light irradiation. Overall, this protocol provides a powerful tool to achieve UITD of PAs by explosively breaking the hydrogen bonds of DNA in GRS-DNA-CuS nanodandelions under NIR light irradiation. We expect DNA-assembled nanotheranostics to serve as a robust platform for a variety of biomedical applications related to photothermal therapy in the oncology field. This protocol can increase experimental reproducibility and contribute to efficient theranostics nanomedicine.

0 Q&A 2682 Views Jun 20, 2021

Plant nanobiotechnology is a flourishing field that uses nanomaterials to study and engineer plant function. Applications of nanotechnology in plants have great potential as tools for improving crop yield, tolerance to disease and environmental stress, agrochemical delivery of pesticides and fertilizers, and genetic modification and transformation of crop plants. Previous studies have used nanomaterials functionalized with chemicals, including biocompatible polymers with charged, neutral, or hydrophobic functional groups, to improve nanomaterial uptake and localization in plant cells. Recently, the use of biorecognition motifs such as peptides has been demonstrated to enable the targeted delivery of nanoparticles in plants (Santana et al., 2020). Herein, we describe a bio-protocol to target nanoparticles with chemical cargoes to chloroplasts in plant leaves and assess targeting efficiency using advanced analytical tools, including confocal microscopy and elemental analysis. We also describe the use of isothermal titration calorimetry to determine the affinity of nanomaterials for their chemical cargoes. Nanotechnology-based methods for targeted delivery guided by conserved plant molecular recognition mechanisms will provide more robust plant bioengineering tools across diverse plant species.


Graphic abstract:



Targeted delivery of nanomaterials with chemical cargoes to chloroplasts enabled by plant biorecognition


0 Q&A 4648 Views May 20, 2021

The design of effective nanoformulations that target metastatic breast cancers is challenging due to a lack of competent imaging and image analysis protocols that can capture the interactions between the injected nanoparticles and metastatic lesions. Here, we describe the integration of in vivo whole-body PET-CT with high temporal resolution, ex vivo whole-organ optical imaging and high spatial resolution confocal microscopy to deconstruct the trafficking of injectable nanoparticle generators encapsulated with polymeric doxorubicin (iNPG-pDox) in pulmonary metastases of triple-negative breast cancer. We describe the details of image acquisition and analysis in a step-wise manner along with the development of a mouse model for metastatic breast cancer. The methods described herein can be easily adapted to any nanoparticle or disease model, allowing a standardized pipeline for in vivo preclinical studies that focus on delineating nanoparticle kinetics and interactions within metastases.

0 Q&A 1857 Views Nov 5, 2020

During swarming, high density flagella-driven bacteria migrate collectively in a swirling pattern on wet agar surfaces, immersed in a thin viscous fluid layer called “swarm fluid”. Though the fluid environment has essential role in the emergence of swarming behavior, the microscopic mechanisms of it in mediating the cooperation of bacteria populations are not fully understood. Here, instead of micro-sized tracers used in previous research, we use gold nanorods as single particle tracers to probe the dynamics of the swarm fluid. This protocol includes five major parts: (1) the culture of swarming bacterial colony; (2) the preparations of gold nanorod tracers and the micro-spraying technique which are used to put the nanotracers into the upper fluid of bacterial swarms; (3) imaging and tracking; (4) other necessary control experiments; (5) data analysis and fitting of physical models. With this method, the nano-sized tracers could move long distances above motile cells without direct collisions with the bacteria bodies. In this way, the microscopic dynamics of the swarm fluid could be tracked with high spatiotemporal resolution. Moreover, the comprehensive analysis of multi-particle trajectories provides systematic visualization of the fluid dynamics. The method is promising to probe the fluid dynamics of other natural or artificial active matter systems.

0 Q&A 2586 Views Aug 5, 2020
Paper nanobiosensors have been established as an excellent platform for analysis of veterinary and human pathogens causing various diseases. Especially, lateral flow assays or biosensors ideal for sensitive, rapid, robust and accurate analysis in laboratory setups and on-site analysis. Viral RNA detection is of great importance for public health as well as animal health protection. In that aspect, the present protocol focuses on the development of functionalized gold nanoparticle-based lateral flow biosensor for fish nervous necrosis virus (Nodavirus) nucleic acids detection. Total viral RNA, isolated from fish samples was subjected to reverse transcription PCR amplification and the amplification products were mixed with specific oligonucleotide probe. A red test line was formed when nodavirus product was present. The proposed assay has great implications on basic research since it eliminates the need for time-consuming, cumbersome electrophoresis protocols and could be adjusted for use on the site of fish culture by fish farmers. Disease monitoring by such bioanalytical platforms without time consuming and costly procedures would have great impact on the aquaculture and environmental safety.
0 Q&A 2790 Views Jul 20, 2020
Synthetic nanoparticle-based drug delivery system is widely known for its ability to increase the efficacy and specificity of loaded drugs, but it often suffers from relatively higher immunotoxicity and higher costs as compared to traditional drug formulations. Contrarily, plant-derived nanoparticles appear to be free from these limitations of synthetic nanoparticles; they are naturally occurring biocompatible vesicles that do not generate immunotoxicity and are easy to obtain. Additionally, lipids isolated from plant-derived nanoparticles have shown the capability of assembling themselves to spherical nano-sized liposomal particles. Herein, we employ lipids extracted from ginger-derived nanoparticles and load them with therapeutic siRNA (CD98-siRNA) to create CD98-siRNA/ginger-lipid nanoparticles. Characterization of the CD98-siRNA/ginger-lipid nanoparticles showed that they present a spherical shape, with a diameter of around 189.5 nm. The surface zeta potential of the nanoparticles varies from -18.1 to -18.4 mV. Furthermore, in recent research, the CD98-siRNA/ginger-lipid nanoparticles have shown specific colon targeting capability and excellent anti-inflammatory efficacy in a Dextran Sodium Sulfate (DSS) induced mouse model of colitis.
0 Q&A 3811 Views Jun 5, 2020
Exosomes, a subtype of extracellular vesicles, are nanovesicles of endocytic origin. Exosomes contain a plethora of proteins, lipids, and genetic materials of parent cells to facilitate intercellular communications. Tracking exosomes in vivo is fundamentally important to understand their biodistribution pattern and the mechanism of biological actions in experimental models. Until now, a number of tracking protocols have been developed, including fluorescence labeling, bioluminescence imaging, magnetic resonance imaging, and computed tomography (CT) tracking of exosomes. Recently, we have shown the tracking and quantification of exosomes in a spinal cord injury model, by using two tracking approaches. More specifically, following intranasal administration of gold nanoparticle-encapsulated exosomes to rats bearing complete spinal cord injury, exosomes in the whole central nervous system were tracked by using microCT, and quantified by using inductively coupled plasma and flame atomic absorption spectroscopy. In addition, optical imaging of fluorescently labeled exosomes was performed to understand the abundance of migrating exosomes in the spinal cord lesion, as compared to the healthy controls, and to further examine their affinity to different cell types in the lesion. Thus, the protocol presented here aids in the study of exosome biodistribution at both cellular and organ levels, in the context of spinal cord injury. This protocol will also enable researchers to better elucidate the fate of administered exosomes in other models of interest.
0 Q&A 2995 Views May 5, 2020
Cells infected with flavivirus release various forms of infectious and non-infectious particles as products and by-products. Comprehensive profiling of the released particles by density gradient centrifugation is informative for understanding viral particle assembly. However, it is difficult to detect low-abundance minor particles in such analyses. We developed a method for viral particle analysis that integrates a high-sensitivity split luciferase system and density gradient centrifugation. This protocol enables high-resolution profiling of particles produced by cells expressing Japanese encephalitis virus factors.
0 Q&A 3381 Views Apr 5, 2020
A viral vector that can safely and efficiently deliver large and diverse molecular cargos into cells is the holy grail of curing many human diseases. Adeno-associated virus (AAV) has been extensively used but has a very small capacity. The prokaryotic virus T4 has a large capacity but lacks natural mechanisms to enter mammalian cells. Here, we created a hybrid vector by combining T4 and AAV into one nanoparticle that possesses the advantages of both. The small 25 nm AAV particles are attached to the large 120 nm x 86 nm T4 head through avidin-biotin cross-bridges using the phage decoration proteins Soc (small outer capsid protein) and Hoc (highly antigenic outer capsid protein). AAV thus “piggy-backed” on T4 capsid, by virtue of its natural ability to enter many types of human cells efficiently acts as a “driver” to deliver large cargos associated with the T4 head. This unique T4-AAV hybrid vector approach could pave the way for the development of novel therapeutics in the future.
14 Q&A 6438 Views Oct 5, 2019
Factors implicated in the pathophysiology of intestinal inflammation include defects in intestinal epithelial barrier function, abnormal immune responses, and activities of the gut microbiota. Current agents used to treat human Inflammatory Bowels Disease (IBD), chronic inflammation of digestive tract, have serious side effects. In addition, most of these treatments target the damaging factors while not providing pro-healing factors that repair the damaged intestine. Here we provide a method to isolate, purify and characterize a specific population from ginger (ginger-derived nanoparticles: GDNPs 2) with anti-inflammatory activities. GDNPs 2 as a drug vehicle are a novel natural, nontoxic delivery system, which target the inflamed intestinal mucosa, blocks damaging factors while promoting pro-healing factors and could easily be developed for large-scale production aimed at the treatment of IBD.



We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.