Immunology


Categories

Protocols in Current Issue
Protocols in Past Issues
0 Q&A 370 Views Feb 20, 2023

Development of the hybridoma technology by Köhler and Milstein (1975) has revolutionized the immunological field by enabling routine use of monoclonal antibodies (mAbs) in research and development efforts, resulting in their successful application in the clinic today. While recombinant good manufacturing practices production technologies are required to produce clinical grade mAbs, academic laboratories and biotechnology companies still rely on the original hybridoma lines to stably and effortlessly produce high antibody yields at a modest price. In our own work, we were confronted with a major issue when using hybridoma-derived mAbs: there was no control over the antibody format that was produced, a flexibility that recombinant production does allow. We set out to remove this hurdle by genetically engineering antibodies directly in the immunoglobulin (Ig) locus of hybridoma cells. We used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) and homology-directed repair (HDR) to modify antibody’s format [mAb or antigen-binding fragment (Fab’)] and isotype. This protocol describes a straightforward approach, with little hands-on time, leading to stable cell lines secreting high levels of engineered antibodies. Parental hybridoma cells are maintained in culture, transfected with a guide RNA (gRNA) targeting the site of interest in the Ig locus and an HDR template to knock in the desired insert and an antibiotic resistance gene. By applying antibiotic pressure, resistant clones are expanded and characterized at the genetic and protein level for their ability to produce modified mAbs instead of the parental protein. Finally, the modified antibody is characterized in functional assays. To demonstrate the versatility of our strategy, we illustrate this protocol with examples where we have (i) exchanged the constant heavy region of the antibody, creating chimeric mAb of a novel isotype, (ii) truncated the antibody to create an antigenic peptide-fused Fab’ fragment to produce a dendritic cell–targeted vaccine, and (iii) modified both the constant heavy (CH)1 domain of the heavy chain (HC) and the constant kappa (Cκ) light chain (LC) to introduce site-selective modification tags for further derivatization of the purified protein. Only standard laboratory equipment is required, which facilitates its application across various labs. We hope that this protocol will further disseminate our technology and help other researchers.


Graphical abstract


0 Q&A 377 Views Dec 5, 2022

Immunoglobulins are proteins produced by the immune system, which bind specifically to the antigen that induced their formation and target it for destruction. Highly purified human immunoglobulins are commonly used in research laboratories for several applications, such as in vitro to obtain hybridomas and in vivo animal immunisation. Several affinity purification methods are used to purify immunoglobulins from human serum, such as protein A/G Sepharose beads, polyethylene glycol, and caprylic acid ammonium sulphate precipitation. Here, we provide a detailed protocol for purification of high-quality IgG from human serum, using affinity chromatography with protein G. The protocol is divided into four main steps (column preparation, serum running, wash, and elution) for IgG purification, and two extra steps (protein dialysis and sucrose concentration) that should be performed when buffer exchange and protein concentration are required. Several IgG affinity purification methods using protein A or G are available in the literature, but protein A has a higher affinity for rabbit, pig, dog, and cat IgG, while protein G has a higher affinity for mouse and human IgG. This affinity-based purification protocol uses protein G for a highly specific purification of human IgG for animal immunization, and it is particularly useful to purify large amounts of human IgG.


Graphical abstract




IgG purification protocol.
The IgG purification protocol consists of four main steps (column preparation, serum running, wash, and elution) and two extra steps (protein dialysis and concentration). a. Diluted serum is added to the protein G beads and IgG binds to the Fc receptors on protein G beads. b. Beads are washed in Hartman’s solution to fully remove the complex protein mixture (multicolour shapes, as depicted in the graphical abstract). c. IgG (orange triangles, as depicted in the graphical abstract) are removed from protein G with glycine and collected in Tris buffer. d. The IgG is transferred into a semi-permeable membrane (‘snake skin’) and allowed to dialyse overnight for buffer exchange with a physiological solution (Hartmann’s).


0 Q&A 2762 Views Jun 20, 2022

Phage display is a proven and widely used technology for selecting specific antibodies against desired targets. However, an immense amount of effort is required to identify and screen the desired positive clones from large and diverse combinatorial libraries. On the other hand, the selection of positive binding clones from synthetic and semi-synthetic libraries has an inherent bias toward clones with randomly produced amber stop codons, making it more difficult to identify desirable binding antibodies. To overcome the screening of desired clones with amber codons, we present a step-by-step approach for effective phage library screening to isolate useful antibodies. The procedure calls for creating a simple new vector system for soluble production of phage ELISA positive binding clones with one or more amber stop codons in their single-chain antibody fragment (scFv) gene sequences, which is otherwise difficult in standard screening.


Graphical abstract:




0 Q&A 1240 Views Apr 5, 2022

Neutralizing antibodies (NAbs) are of particular importance because they can prevent binding of the receptor binding domain (RBD) of the spike protein (S protein) to the angiotensin-converting enzyme 2 (ACE2) receptor present at the surface of human cells, preventing virus entry into the host cells. The gold standard method for detection of NAbs is the plaque reduction neutralization test (PRNT). Based on the measurement of cell lysis due to viral infection, this test is able to detect antibodies that prevent cell infection (Muruato et al., 2020; Lau et al., 2021). This technique requires the use of live pathogens, i.e., SARS-CoV-2 in this case, and must be done in a biosafety level 3 (BL3) laboratory. In addition, it requires expensive installations, skillful and meticulous staff, and a high workload, which prevents its wide implementation even in research laboratories. A SARS-CoV-2 pseudovirus will express the S protein responsible for cell entrance, but will not express the pathogenic genetic material of the virus, making them less dangerous for laboratory staff and the environment.


Graphic abstract:



0 Q&A 2152 Views Jan 20, 2022

The SARS-CoV-2 pandemic and vaccination campaign has illustrated the need for high throughput serological assays to quantitatively measure antibody levels. Here, we present a protocol for a high-throughput colorimetric ELISA assay to detect IgG antibodies against the SARS-CoV-2 spike protein. The assay robustly distinguishes positive from negative samples, while controlling for potential non-specific binding from serum samples. To further eliminate background contributions, we demonstrate a computational pipeline for fitting ELISA titration curves, that produces an extremely sensitive antibody signal metric for quantitative comparisons across samples and time.


0 Q&A 2404 Views Nov 5, 2021

For enveloped viruses, such as SARS-CoV-2, transmission relies on the binding of viral glycoproteins to cellular receptors. Conventionally, this process is recapitulated in the lab by infection of cells with isolated live virus. However, such studies can be restricted due to the availability of high quantities of replication-competent virus, biosafety precautions and associated trained staff. Here, we present a protocol based on pseudotyping to produce recombinant replication-defective lentiviruses bearing the SARS-CoV or SARS-CoV-2 attachment Spike glycoprotein, allowing the investigation of viral entry in a lower-containment facility. Pseudoparticles are produced by cells transiently transfected with plasmids encoding retroviral RNA packaging signals and Gag-Pol proteins, for the reconstitution of lentiviral particles, and a plasmid coding for the viral attachment protein of interest. This approach allows the investigation of different aspects of viral entry, such as the identification of receptor tropism, the prediction of virus host range, and zoonotic transmission potential, as well as the characterisation of antibodies (sera or monoclonal antibodies) and pharmacological inhibitors that can block entry.


Graphic abstract:

SARS-CoV and SARS-CoV-2 pseudoparticle generation and applications.


0 Q&A 2075 Views Sep 5, 2021

The relapsing malaria species, Plasmodium vivax, is the most widely distributed and difficult-to-treat cause of human malaria. The merozoites of P. vivax preferentially invade ephemeral human CD71+ reticulocytes (nascent reticulocytes), thereby limiting the development of a robust continuous culture in vitro. Fortunately, P. vivax’s sister species, P. cynomolgi Berok, can be cultured continuously, providing the ability to screen novel therapeutics drug and vaccine candidates in a reliable and high-throughput manner. Based on well-established growth inhibition activity (GIA) assays against P. falciparum and P. knowlesi, this protocol adopts the current flow cytometry assay methodology and investigates P. vivax inhibitory antibodies using the P. cynomolgi Berok invasion model based on the thiol-reactivity and DNA abundance of viable parasites in macaque erythrocytes. Established GIA assays screen antibodies at either a single concentration or high/low dose concentrations to provide quick insights for prioritizing potential antibodies capable of specifically interrupting parasite ligand and host receptor binding with minimal concentrations. Hence, this protocol expands on the existing GIA assay by using serially diluted antibodies and generating a dose-response curve to better quantify the inhibitory efficacy amongst selected vaccine candidates.

1 Q&A 2242 Views Aug 20, 2021

Recently, we developed transcription/translation coupled with the association of puromycin linker (TRAP) display as a quick in vitro selection method to obtain antibody-like proteins. For the in vitro selection, it is important to prepare mRNA libraries among which the diversity is high. Here, we describe a method for the preparation of monobody mRNA libraries with greater than 1013 theoretical diversity. First, we synthesized two long single-stranded DNAs that corresponded to fragments of monobody DNA, with random codons in the BC and FG loops. These oligonucleotides were ligated by T4 DNA ligase with the support of guide oligonucleotides containing 3′ ends that were protected by a modification. After amplifying the product DNAs by PCR, one end of each DNA fragment was digested with the type II restriction enzyme BsaI, and the resulting DNA fragments were ligated using T4 DNA ligase. After amplification of the DNA product, mRNAs were synthesized by T7 RNA polymerase. This method is simple and could be used for the preparation of mRNA libraries for various antibody-like proteins.

Graphic abstract:


Construction of a highly diverse mRNA library.


0 Q&A 4988 Views May 20, 2021

The recombinant receptor-binding domain (RBD) of the viral spike protein from SARS-CoV-1 and 2 are reliable antigens for detecting viral-specific antibodies in humans. We and others have shown that the levels of RBD-binding antibodies and SARS-CoV-2 neutralizing antibodies in patients are correlated. Here, we report the expression and purification of properly folded RBD proteins from SARS and common-cold HCoVs in mammalian cells. RBD proteins were produced with cleavable tags for affinity purification from the cell culture medium and to support multiple immunoassay platforms and drug discovery efforts.


Graphic abstract:



High-Yield Production of Viral Spike RBDs for Diagnostics and Drug Discovery


0 Q&A 4290 Views Mar 20, 2021

In this protocol, we describe a method to monitor cell migration by live-cell imaging of adherent cells. Scratching assay is a common method to investigate cell migration or wound healing capacity. However, achieving homogenous scratching, finding the optimal time window for end-point analysis and performing an objective image analysis imply, even for practiced and adept experimenters, a high chance for variability and limited reproducibility. Therefore, our protocol implemented the assessment for cell mobility by using homogenous wound making, sequential imaging and automated image analysis. Cells were cultured in 96-well plates, and after attachment, homogeneous linear scratches were made using the IncuCyte® WoundMaker. The treatments were added directly to wells and images were captured every 2 hours automatically. Thereafter, the images were processed by defining a scratching mask and a cell confluence mask using a software algorithm. Data analysis was performed using the IncuCyte® Cell Migration Analysis Software. Thus, our protocol allows a time-lapse analysis of treatment effects on cell migration in a highly reliable, reproducible and re-analyzable manner.




We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.