Malancha TA
  • Department of Biological Sciences, IISER, India, India,
Research fields
  • Stem cell
Personal information

Education

Ph.D, National Institute of Immunology, India, 2000

Current position

Assistant Professor, Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India

Publications

  1. Himal, I., Goyal, U. and Ta, M. (2017). Evaluating Wharton's Jelly-Derived Mesenchymal Stem Cell's Survival, Migration, and Expression of Wound Repair Markers under Conditions of Ischemia-Like Stress. Stem Cells Int 2017: 5259849.
  2. Arora, S., Saha, S., Roy, S., Das, M., Jana, S. S. and Ta, M. (2015). Role of Nonmuscle Myosin II in Migration of Wharton's Jelly-Derived Mesenchymal Stem Cells. Stem Cells Dev 24(17): 2065-2077.
  3. Swamynathan, P., Venugopal, P., Kannan, S., Thej, C., Kolkundar, U., Bhagwat, S., Ta, M., Majumdar, A. S. and Balasubramanian, S. (2014). Are serum-free and xeno-free culture conditions ideal for large scale clinical grade expansion of Wharton's jelly derived mesenchymal stem cells? A comparative study. Stem Cell Res Ther 5(4): 88.
  4. Shivakumar, S. B., Bharti, D., Subbarao, R. B., Jang, S. J., Park, J. S., Ullah, I., Park, J. K., Byun, J. H., Park, B. W. and Rho, G. J. (2016). DMSO- and Serum-Free Cryopreservation of Wharton's Jelly Tissue Isolated From Human Umbilical Cord. J Cell Biochem 117(10): 2397-2412.
  5. Sharma, T., Kumari, P., Pincha, N., Mutukula, N., Saha, S., Jana, S. S. and Ta, M. (2014). Inhibition of non-muscle myosin II leads to G0/G1 arrest of Wharton's jelly-derived mesenchymal stromal cells. Cytotherapy 16(5): 640-652.
  6. Balasubramanian, S., Venugopal, P., Sundarraj, S., Zakaria, Z., Majumdar, A. S. and Ta, M. (2012). Comparison of chemokine and receptor gene expression between Wharton's jelly and bone marrow-derived mesenchymal stromal cells. Cytotherapy 14(1): 26-33.
  7. Venugopal, P., Balasubramanian, S., Majumdar, A. S. and Ta, M. (2011). Isolation, characterization, and gene expression analysis of Wharton's jelly-derived mesenchymal stem cells under xeno-free culture conditions. Stem Cells Cloning 4: 39-50.
  8. Nekanti, U., Mohanty, L., Venugopal, P., Balasubramanian, S., Totey, S. and Ta, M. (2010). Optimization and scale-up of Wharton's jelly-derived mesenchymal stem cells for clinical applications. Stem Cell Res 5(3): 244-254.
  9. Nekanti, U., Dastidar, S., Venugopal, P., Totey, S. and Ta, M. (2010). Increased proliferation and analysis of differential gene expression in human Wharton's jelly-derived mesenchymal stromal cells under hypoxia. Int J Biol Sci 6(5): 499-512.
  10. Nekanti, U., Rao, V. B., Bahirvani, A. G., Jan, M., Totey, S. and Ta, M. (2010). Long-term expansion and pluripotent marker array analysis of Wharton's jelly-derived mesenchymal stem cells. Stem Cells Dev 19(1): 117-130.
  11. Atouf, F., Park, C. H., Pechhold, K., Ta, M., Choi, Y. and Lumelsky, N. L. (2007). No evidence for mouse pancreatic beta-cell epithelial-mesenchymal transition in vitro. Diabetes 56(3): 699-702.
  12. Ta, M., Atouf, F., Choi, Y. and Lumelsky, N. (2006). The defined combination of growth factors controls generation of long-term-replicating islet progenitor-like cells from cultures of adult mouse pancreas. Stem Cells 24(7): 1738-49.
  13. Atouf, F., Choi, Y., Fowler, M. J., Poffenberger, G., Vobecky, J., Ta, M., Chapman, G. B., Powers, A. C. and Lumelsky, N. L. (2005). Generation of islet-like hormone-producing cells in vitro from adult human pancreas. Cell Transplant 14(10): 735-748.
  14. Choi, Y., Ta, M., Atouf, F. and Lumelsky, N. (2004). Adult pancreas generates multipotent stem cells and pancreatic and nonpancreatic progeny. Stem Cells 22(6): 1070-1084.
  15. Ta, M. and Vrati, S. (2000). Mov34 protein from mouse brain interacts with the 3' noncoding region of Japanese encephalitis virus. J Virol 74(11): 5108-5115.
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.