Microbiology


Categories

Protocols in Current Issue
Protocols in Past Issues
0 Q&A 482 Views Jun 20, 2024

Human babesiosis is a tick-borne disease caused by Babesia pathogens. The disease, which presents with malaria-like symptoms, can be life-threatening, especially in individuals with weakened immune systems and the elderly. The worldwide prevalence of human babesiosis has been gradually rising, prompting alarm among public health experts. In other pathogens, genetic techniques have proven to be valuable tools for conducting functional studies to understand the importance of specific genes in development and pathogenesis as well as to validate novel cellular targets for drug discovery. Genetic manipulation methods have been established for several non-human Babesia and Theileria species and, more recently, have begun to be developed for human Babesia parasites. We have previously reported the development of a method for genetic manipulation of the human pathogen Babesia duncani. This method is based on positive selection using the hDHFR gene as a selectable marker, whose expression is regulated by the ef-1aB promoter, along with homology regions that facilitate integration into the gene of interest through homologous recombination. Herein, we provide a detailed description of the steps needed to implement this strategy in B. duncani to study gene function. It is anticipated that the implementation of this method will significantly improve our understanding of babesiosis and facilitate the development of novel and more effective therapeutic strategies for the treatment of human babesiosis.

0 Q&A 517 Views Jun 20, 2024

The Auxin-inducible degron (AID) system is a genetic tool that induces rapid target protein depletion in an auxin-dependent manner. Recently, two advanced AID systems—the super-sensitive AID and AID 2—were developed using an improved pair of synthetic auxins and mutated TIR1 proteins. In these AID systems, a nanomolar concentration of synthetic auxins is sufficient as a degradation inducer for target proteins. However, despite these advancements, AID systems still require the fusion of an AID tag to the target protein for degradation, potentially affecting its function and stability. To address this limitation, we developed an affinity linker–based super-sensitive AID (AlissAID) system using a single peptide antibody known as a nanobody. In this system, the degradation of GFP- or mCherry-tagged target proteins is induced in a synthetic auxin (5-Ad-IAA)–dependent manner. Here, we introduce a simple method for generating AlissAID strains targeting GFP or mCherry fusion proteins in budding yeasts.

0 Q&A 524 Views Apr 20, 2024

Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) has become the state of the art for mutagenesis in filamentous fungi. Here, we describe a ribonucleoprotein complex (RNP)-mediated CRISPR/Cas9 for mutagenesis in Sporisorium reilianum. The efficiency of the method was tested in vitro with a cleavage assay as well as in vivo with a GFP-expressing S. reilianum strain. We applied this method to generate frameshift- and knock-out mutants in S. reilianum without a resistance marker by using an auto-replicating plasmid for selection. The RNP-mediated CRISPR/Cas9 increased the mutagenesis efficiency, can be applied for all kinds of mutations, and enables a marker-free genome editing in S. reilianum.

0 Q&A 415 Views Mar 20, 2024

Erwinia persicina is a gram-negative bacterium that causes diseases in plants. Recently, E. persicina BST187 was shown to exhibit broad-spectrum antibacterial activity due to its inhibitory effects on bacterial acetyl-CoA carboxylase, demonstrating promising potential as a biological control agent. However, the lack of suitable genetic manipulation techniques limits its exploitation and industrial application. Here, we developed an efficient transformation system for E. persicina. Using pET28a as the starting vector, the expression cassette of the red fluorescent protein–encoding gene with the strong promoter J23119 was constructed and transformed into BST187 competent cells to verify the overexpression system. Moreover, suicide plasmid–mediated genome editing systems was developed, and lacZ was knocked out of BST187 genome by parental conjugation transfer using the recombinant suicide vector pKNOCK-sacB-km-lacZ. Therefore, both the transformation and suicide plasmid–mediated genome editing system will greatly facilitate genetic manipulations in E. persicina and promote its development and application.


Key features

• Our studies establish a genetic manipulation system for Erwinia persicina, providing a versatile tool for studying the gene function of non-model microorganisms.

• Requires approximately 6–10 days to complete modification of a chromosome locus.


Graphical overview


0 Q&A 569 Views Nov 5, 2023

Cellular sensitivity is an approach to inhibit the growth of certain cells in response to any non-permissible conditions, as the presence of a cytotoxic agent or due to changes in growth parameters such as temperature, salt, or media components. Sensitivity tests are easy and informative assays to get insight into essential gene functions in various cellular processes. For example, cells having any functionally defective genes involved in DNA replication exhibit sensitivity to non-permissive temperatures and to chemical agents that block DNA replication fork movement. Here, we describe a sensitivity test for multiple strains of Saccharomyces cerevisiae and Candida albicans of diverged genetic backgrounds subjected to several genotoxic chemicals simultaneously. We demonstrate it by testing the sensitivity of DNA polymerase defective yeast mutants by using spot analysis combined with colony forming unit (CFU) efficiency estimation. The method is very simple and inexpensive, does not require any sophisticated equipment, can be completed in 2–3 days, and provides both qualitative and quantitative data. We also recommend the use of this reliable methodology for assaying the sensitivity of these and other fungal species to antifungal drugs and xenobiotic factors.

0 Q&A 623 Views Aug 5, 2023

High yield of good quality plasmid DNA from gram -ve bacteria (Agrobacterium tumefaciens, A. rhizogenes, and Rhizobium sp.) and gram +ve bacterium (Bacillus thuringiensis) is difficult. The widely used plasmid extraction kits for Escherichia coli yield a low quantity of poor-quality plasmid DNA from these species. We have optimized an in-house modification of the QIAprep Spin Miniprep kit protocol of Qiagen, consisting of two extraction steps. In the first, the centrifugation after adding neutralization buffer is followed by ethanol (absolute) precipitation of plasmid DNA. In the second extraction step, the precipitated DNA is dissolved in Tris-EDTA (TE) buffer, followed by an addition of 0.5 volumes of 5 M sodium chloride and 0.1 volumes of 20% (w/v) sodium dodecyl sulfate. After incubation at 65 °C for 15 min, the plasmid DNA is extracted with an equal volume of chloroform:isoamyl alcohol (CIA). RNase (20 mg/mL) is added to the upper phase retrieved after centrifugation and is incubated at 37 °C for 15 min. The extraction of the plasmid DNA with an equal volume of CIA is followed by centrifugation and is precipitated from the retrieved upper phase by adding an equal volume of absolute ethanol. The pellet obtained after centrifugation is washed twice with 70% (v/v) ethanol, air dried, dissolved in TE buffer, and quantified. This easy-to-perform protocol is free from phenol extraction, density gradient steps, and DNA binding columns, and yields high-quality plasmid DNA. The protocol opens an easy scale up to yield a large amount of high-quality plasmid DNA, useful for high-throughput downstream applications.


Key features

• The protocol is free from density gradient steps and use of phenol.

• The protocol is an extension of the QIAprep Spin Miniprep kit (Qiagen) and is applicable for plasmid DNA isolation from difficult-to-extract bacterial species.

• The protocol facilitates the direct transformation of the ligation product into Agrobacterium by skipping the step of E. coli transformation.

• The plasmids isolated are of sequencing grade and the method is useful for extracting plasmids for metagenomic studies.


Graphical overview



Overview of the plasmid isolation protocol (modified QIAprep Spin Miniprep kit) of the present study

0 Q&A 785 Views Jun 5, 2023

Gene deletion is one of the standard approaches in genetics to investigate the roles and functions of target genes. However, the influence of gene deletion on cellular phenotypes is usually analyzed sometime after the gene deletion was introduced. Such lags from gene deletion to phenotype evaluation could select only the fittest fraction of gene-deleted cells and hinder the detection of potentially diverse phenotypic consequences. Therefore, dynamic aspects of gene deletion, such as real-time propagation and compensation of deletion effects on cellular phenotypes, still need to be explored. To resolve this issue, we have recently introduced a new method that combines a photoactivatable Cre recombination system and microfluidic single-cell observation. This method enables us to induce gene deletion at desired timings in single bacterial cells and to monitor their dynamics for prolonged periods. Here, we detail the protocol for estimating the fractions of gene-deleted cells based on a batch-culture assay. The duration of blue light exposure significantly affects the fractions of gene-deleted cells. Therefore, gene-deleted and non-deleted cells can coexist in a cellular population by adjusting the duration of blue light exposure. Single-cell observations under such illumination conditions allow the comparison of temporal dynamics between gene-deleted and non-deleted cells and unravel phenotypic dynamics provoked by gene deletion.

0 Q&A 768 Views Apr 20, 2023

Genetic strategies such as gene disruption and fluorescent protein tagging largely contribute to understanding the molecular mechanisms of biological functions in bacteria. However, the methods for gene replacement remain underdeveloped for the filamentous bacteria Leptothrix cholodnii SP-6. Their cell chains are encased in sheath composed of entangled nanofibrils, which may prevent the conjugation for gene transfer. Here, we describe a protocol optimized for gene disruption through gene transfer mediated by conjugation with Escherichia coli S17-1 with details on cell ratio, sheath removal, and loci validation. The obtained deletion mutants for specific genes can be used to clarify the biological functions of the proteins encoded by the target genes.


Graphical overview


1 Q&A 1050 Views Apr 20, 2023

In this study, a sonication-based DNA extraction method was developed, in which the whole process can be finished within 10 min. This method is almost zero cost and time-saving, which is useful for high throughput screening, especially in the screening of mutants generated in random mutagenesis. This method is effective in genomic DNA extraction for PCR amplification in several Gram-positive bacteria, including Bacillus cereus, Bacillus thuringiensis, Bacillus subtilis, and Listeria monocytogenes.

0 Q&A 607 Views Mar 5, 2023

Malaria molecular surveillance has great potential to support national malaria control programs (NMCPs), informing policy for its control and elimination. Here, we present a new three-day workflow for targeted resequencing of markers in 13 resistance-associated genes, histidine rich protein 2 and 3 (hrp2&3), a country (Peru)-specific 28 SNP-barcode for population genetic analysis, and apical membrane antigen 1 (ama1), using Illumina short-read sequencing technology. The assay applies a multiplex PCR approach to amplify all genomic regions of interest in a rapid and easily standardizable procedure and allows simultaneous amplification of a high number of targets at once, therefore having great potential for implementation into routine surveillance practice by NMCPs. The assay can be performed on routinely collected filter paper blood spots and can be easily adapted to different regions to investigate either regional trends or in-country epidemiological changes.




We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.