Advanced Search
Last updated date: Oct 21, 2024 DOI: 10.21769/p2735 Views: 89 Forks: 1
Instruments:
PCR Machine**: Used for PCR amplification.
Temperature-Controlled Centrifuge**: Used for centrifugal separation.
Thermostatic Water Bath**: Used for yeast transformation steps.
Gel Imaging System**: Used to observe the results of agarose gel electrophoresis.
Agarose Gel Electrophoresis Equipment**: Used for the separation and purification of DNA fragments.
Micropipettes**: Used for precise reagent dispensing.
Temperature-Controlled Incubator**: Used for the cultivation of bacterial and yeast strains.
Laminar Flow Cabinet (Sterile Workstation)**: Used for sterile operations.
Reagents and Chemicals:
pBRIDGE Vector**: Used for constructing the bait vector.
pGADT7 Vector**: Used for constructing the prey vector.
KOD FX DNA Polymerase**: Used for PCR amplification.
dNTPs (Deoxyribonucleotide Triphosphates)**: Substrates for PCR reactions.
Restriction Enzymes (NotI-HF, BglII-HF, EcoRI-HF, SalI-HF, BamHI-HF)**: Used for cutting vectors and insert fragments.
rCutSmart Buffer**: Used for restriction enzyme reactions.
ClonExpress® Ultra One Step Cloning Kit**: Used for homologous recombination cloning.
EasyPure Quick Gel Extraction Kit**: Used for extracting DNA fragments from agarose gels.
Yeast Competent Cells (Y2HGold, Strain cc309)**: Used for transforming constructed vectors.
PEG/LiAc Solution**: Used for yeast transformation.
Carrier DNA**: Used as auxiliary DNA during yeast transformation.
SD Medium (Synthetic Defined Medium)**: Synthetic dropout medium for selection and screening of yeast strains.
X-α-Gal and 3-AT**: Used for yeast colony screening and auto-activation testing.
Antibiotics (e.g., Ampicillin)**: Used for bacterial culture and plasmid selection.
Plasmid Extraction Kit**: Used for extracting plasmid DNA from bacteria.
T7 and 3’AD Sequencing Primers**: Used for DNA sequencing.

Schematic workflow of the Y3H experiment
Vectors used in this study were part of the Matchmaker Gold Yeast Two-Hybrid System (Takara Bio, Mountain View, CA, USA). The pBRIDGE vector was used as a backbone for the bait construct. To design a bait that will be recognized in a methylation-dependent manner, the catalytic SET domain of the G9a PKMT (G9a-SET; residues 931–1210) together with a nuclear localization sequence (NLS) and an HA-tag was cloned under the MET25 promoter in the MCS II region of the pBRIDGE vector using NotI and BglII restriction sites. On the same vector, the N-terminal twenty residues of histone H3 (referred later as an H3N) were cloned in fusion with the GAL4-binding domain (GAL4-BD) under an ADH1 promoter in the MCS I using EcoRI and BamHI restriction sites. The bait plasmid with H3N located C-terminally with respect to GAL4-BD was also cloned. The pBRIDGE vector containing GAL4-BD-H3N but without G9a-SET was also generated as a negative control. The preys were expressed in the pGADT7 vector(Rawłuszko-Wieczorek AA, Knodel F, Tamas R, Dhayalan A, Jeltsch A. Identification of protein lysine methylation readers with a yeast three-hybrid approach. Epigenetics Chromatin. 2018 Jan 25;11(1):4.)
The purpose of the yeast three-hybrid (Y3H) experiment is to verify the effect of gene X on the interaction between genes A and B, given their known relationship. Common methods include constructing gene A into the pGADT7 vector, and genes B and X into the MCSI and MCSII sites of the pBridge vector, respectively, and verifying the interaction through co-transformation into Y2HGold yeast cells.
1. Construction of pBridge-B-X Vector
1.1 **PCR Amplification of Bait-B with Adapter Sequences**
- Bait sequence synthesis rules:
- B-F: `tgactgtatcgccgg` + Bait CDS first 20bp
- B-R: `tagcttggctgcagg` + Bait CDS last 20bp (reverse complement)
1.2 **PCR Amplification System for Bait Gene B with Adapters (using KOD FX, TOYOBO KFX-101)**
- Before preparing the reaction mixture, mix all reagents except KOD FX (enzyme solution) thoroughly. Thaw frozen reagents on ice before use.
- 2x PCR buffer: 25 μl
- 2mM dNTPs: 10 μl
- B-F Primer: 1.5 μl
- B-R Primer: 1.5 μl
- Plant cDNA: 0.2 μg
- KOD FX (1.0U/μl): 1 μl
- ddH2O: up to 50 μl
- Add KOD FX (enzyme solution) last, mix the reaction mixture thoroughly using a vortex, spin down, and then perform PCR.
1.3 **PCR Amplification of Bait-X with Adapter Sequences**
- Bait sequence synthesis rules:
- X-F: `gaagagaaaggtggc` + Bait CDS first 20bp
- X-R: `ggagatcagcccgaa` + Bait CDS last 20bp (reverse complement)
1.4 **PCR Amplification System for Bait Gene X with Adapters (using KOD FX, TOYOBO KFX-101)**
- Before preparing the reaction mixture, mix all reagents except KOD FX (enzyme solution) thoroughly. Thaw frozen reagents on ice before use.
- 2x PCR buffer: 25 μl
- 2mM dNTPs: 10 μl
- X-F Primer: 1.5 μl
- X-R Primer: 1.5 μl
- Plant cDNA: 0.2 μg
- KOD FX (1.0U/μl): 1 μl
- ddH2O: up to 50 μl
- Add KOD FX (enzyme solution) last, mix the reaction mixture thoroughly using a vortex, spin down, and then perform PCR.
1.5 **Linearization of pGBKT7 Plasmid**
- Remove pGBKT7 plasmid from -20°C freezer, place 10x rCutSmart buffer on ice until completely dissolved, and prepare the following system:
- 10x rCutSmart buffer: 5 μl
- EcoRI-HF: 1 μl
- SalI-HF: 1 μl
- pBridge Plasmid DNA: 1 μg
- ddH2O: up to 50 μl
- Use a temperature-controlled PCR machine with the following program:
- 37°C for 45 min
- 65°C for 45 sec
- After the reaction, transfer to a 4°C refrigerator for storage.
1.6 **Agarose Gel Electrophoresis and Gel Extraction (EasyPure Quick Gel Extraction Kit, TransGen Biotech, EG101)**
- Method reference: Wang, S., et al. (2024). Application of the Nicotiana Allergic Necrosis Assay for the Validation of Protein-Protein Interactions between Fungal Effectors and Plant Receptor Kinases. Bio-protocol Preprint. bio-protocol.org/prep2729.
1.7 **Homologous Recombination to Construct pBridge-B Vector (ClonExpress® Ultra One Step Cloning Kit, Vazyme, C115)**
- Calculate the dosage of linearized vector and insert fragment:
- Optimal cloning vector dosage = [0.02 × vector base pairs] ng (0.03 pmol)
- Optimal insert fragment dosage = [0.04 × insert fragment base pairs] ng (0.06 pmol)
- Note: To ensure accurate sample addition, dilute the linearized vector and insert fragment appropriately before preparing the recombination reaction system, with each component added in a volume not less than 1 μl.
- Prepare the following reaction system on ice:
- Linearized vector pBridge: X μl
- Insert fragment Bait: B μl
- 2× ClonExpress Mix: 5 μl
- ddH2O: to 10 μl
- Mix gently using a pipette (do not vortex), spin down briefly to collect the reaction mixture at the bottom of the tube.
- Use a temperature-controlled PCR machine with the following program:
- 50°C for 30 min
- After the reaction, transfer to a 4°C refrigerator for storage.
1.8 **Sequencing of pBridge-B**
- Sequencing primers and sequences:
- 5' sequencing primer: 5'-TCATCGGAAGAGAGTAGT-3'
- 3' sequencing primer: 5'-AATTTATTTCTTTTCGGATAA-3'
- After sequencing, expand the E. coli culture and extract the plasmid. Method reference: Wang, S., et al. (2024). Application of the Nicotiana Allergic Necrosis Assay for the Validation of Protein-Protein Interactions between Fungal Effectors and Plant Receptor Kinases. Bio-protocol Preprint. bio-protocol.org/prep2729.
1.9 **Linearization of pBridge-B Plasmid**
- Remove pBridge-B plasmid from -20°C freezer, place 10x rCutSmart buffer on ice until completely dissolved, and prepare the following system:
- 10x rCutSmart buffer: 5 μl
- NotI-HF: 1 μl
- BglII-HF: 1 μl
- pBridge-B Plasmid DNA: 1 μg
- ddH2O: up to 50 μl
- Use a temperature-controlled PCR machine with the following program:
- 37°C for 45 min
- 65°C for 45 sec
- After the reaction, transfer to a 4°C refrigerator for storage.
1.10 **Agarose Gel Electrophoresis and Gel Extraction (EasyPure Quick Gel Extraction Kit, TransGen Biotech, EG101)**
- Method reference: Wang, S., et al. (2024). Application of the Nicotiana Allergic Necrosis Assay for the Validation of Protein-Protein Interactions between Fungal Effectors and Plant Receptor Kinases. Bio-protocol Preprint. bio-protocol.org/prep2729.
1.11 **Homologous Recombination to Construct pBridge-B-X Vector (ClonExpress® Ultra One Step Cloning Kit, Vazyme, C115)**
- Calculate the dosage of linearized vector and insert fragment:
- Optimal cloning vector dosage = [0.02 × vector base pairs] ng (0.03 pmol)
- Optimal insert fragment dosage = [0.04 × insert fragment base pairs] ng (0.06 pmol)
- Note: To ensure accurate sample addition, dilute the linearized vector and insert fragment appropriately before preparing the recombination reaction system, with each component added in a volume not less than 1 μl.
- Prepare the following reaction system on ice:
- Linearized vector pBridge-B: X μl
- Insert fragment Bait: X μl
- 2× ClonExpress Mix: 5 μl
- ddH2O: to 10 μl
- Mix gently using a pipette (do not vortex), spin down briefly to collect the reaction mixture at the bottom of the tube.
- Use a temperature-controlled PCR machine with the following program:
- 50°C for 30 min
- After the reaction, transfer to a 4°C refrigerator for storage.
1.12 **Sequencing of pBridge-B-X**
- Sequencing primers and sequences:
- 5' sequencing primer: 5'-TCATCGGAAGAGAGTAGT-3'
- 3' sequencing primer: 5'-AATTTATTTCTTTTCGGATAA-3'
- After sequencing, expand the E. coli culture and extract the plasmid. Method reference: Wang, S., et al. (2024). Application of the Nicotiana Allergic Necrosis Assay for the Validation of Protein-Protein Interactions between Fungal Effectors and Plant Receptor Kinases. Bio-protocol Preprint. bio-protocol.org/prep2729.
#### 2. Construction of pGADT7-A Vector
2.1 **PCR Amplification of Prey with Adapter Sequences**
- Prey sequence synthesis rules:
- A-F: `GCCATGGAGGCCAGTGAA` + Prey CDS first 20bp
- A-R: `AGCTCGAGCTCGATGGAT` + Prey CDS last 20bp (reverse complement)
2.2 **PCR Amplification System for Prey Gene X with Adapters (using KOD FX, TOYOBO KFX-101)**
- Before preparing the reaction mixture, mix all reagents except KOD FX (enzyme solution) thoroughly. Thaw frozen reagents on ice before use.
- 2x PCR buffer: 25 μl
- 2mM dNTPs: 10 μl
- A-F Primer: 1.5 μl
- A-R Primer: 1.5 μl
- Prey cDNA: 0.2 μg
- KOD FX (1.0U/μl): 1 μl
- ddH2O: up to 50 μl
- Add KOD FX (enzyme solution) last, mix the reaction mixture thoroughly using a vortex, spin down, and then perform PCR.
2.3 **PCR Amplification of Prey Gene X with Adapters**
- Use a temperature-controlled PCR machine with the following program:
- Predenature at 94°C for 2 min.
- Denature at 98°C for 10 sec.
- Annealing at (Tm-5)°C for 30 sec.
- Extension at 68°C for 1kb/min.
- Set 33 cycles for Denature to Extension.
- Final extension at 68°C for 7 min.
- After the reaction, transfer to a 4°C refrigerator for storage.
2.4 **Linearization of pGADT7 Plasmid**
- Remove pGADT7 plasmid from -20°C freezer, place 10x rCutSmart buffer on ice until completely dissolved, and prepare the following system:
- 10x rCutSmart buffer: 5 μl
- EcoR I-HF: 1 μl
- BamH I-HF: 1 μl
- pGADT7 Plasmid DNA: 1 μg
- ddH2O: up to 50 μl
- Use a temperature-controlled PCR machine with the following program:
- 37°C for 45 min
- 65°C for 45 sec
- After the reaction, transfer to a 4°C refrigerator for storage.
2.5 **Agarose Gel Electrophoresis and Gel Extraction (EasyPure Quick Gel Extraction Kit, TransGen Biotech, EG101)**
- Method reference: Wang, S., et al. (2024). Application of the Nicotiana Allergic Necrosis Assay for the Validation of Protein-Protein Interactions between Fungal Effectors and Plant Receptor Kinases. Bio-protocol Preprint. bio-protocol.org/prep2729.
2.6 **Homologous Recombination to Construct Vector pGADT7-A (ClonExpress® Ultra One Step Cloning Kit, Vazyme, C115)**
- Calculate the dosage of linearized vector and insert fragment:
- Optimal cloning vector dosage = [0.02 × vector base pairs] ng (0.03 pmol)
- Optimal insert fragment dosage = [0.04 × insert fragment base pairs] ng (0.06 pmol)
- Note: To ensure accurate sample addition, dilute the linearized vector and insert fragment appropriately before preparing the recombination reaction system, with each component added in a volume not less than 1 μl.
- Prepare the following reaction system on ice:
- Linearized vector pGADT7: X μl
- Insert fragment Bait: A μl
- 2× ClonExpress Mix: 5 μl
- ddH2O: to 10 μl
- Mix gently using a pipette (do not vortex), spin down briefly to collect the reaction mixture at the bottom of the tube.
- Use a temperature-controlled PCR machine with the following program:
- 50°C for 30 min
- After the reaction, transfer to a 4°C refrigerator for storage.
2.7 **Sequencing of pGADT7-A**
- Sequencing primers and sequences:
- T7 sequencing primer
- 3’AD sequencing primer
- After sequencing, expand the E. coli culture and extract the plasmid. Method reference: Wang, S., et al. (2024). Application of the Nicotiana Allergic Necrosis Assay for the Validation of Protein-Protein Interactions between Fungal Effectors and Plant Receptor Kinases. Bio-protocol Preprint. bio-protocol.org/prep2729.
#### 3. Auto-Activation Test of pGBKT7-B-X
3.1 **Transformation of Y2HGold Competent Cells**
- Take 100 µl of Y2HGold competent cells (Coolaber: cc309) thawed on ice, add 1 µg each of pre-cooled pGADT7 + pBridge-B-X and pGADT7, 10 µl of Carrier DNA (95-100°C for 5 min, quick chill in ice water, repeat once), and 500 µl of PEG/LiAc (333 µL of 50% PEG3350 solution, 83.5 µL of 1M LiAc solution, 83.5 µL of 10x TE buffer), mix by pipetting several times, incubate at 30°C for 30 min (invert 6-8 times at 15 min).
- Place the tube in a 42°C water bath for 15 min (invert 6-8 times at 7.5 min).
- Centrifuge at 5000 rpm for 40 s, discard the supernatant, resuspend in 400 µl of ddH2O, centrifuge for 30 s, discard the supernatant.
- Resuspend in 150 µl of sterile water, then take 50 µL each to spread on SD/-Trp/-Met, SD/-Trp/-Met/X-α-Gal, and SD/-Trp/-Met/X-α-Gal/3-AT solid selection media, incubate at 29°C for 48-96h; on different concentrations of 3-AT (10 mM, 20 mM, 30 mM, 40 mM, 50 mM, 60 mM, 70 mM, 80 mM) plates, the fewest yeast colonies (and not blue) or none at all indicate the best 3-AT concentration (best inhibitory concentration, minimum inhibitory concentration, background expression concentration, auto-activation concentration).
#### 4. Yeast Three-Hybrid Dot-Blot Verification
4.1 **Transformation of Y2HGold Competent Cells**
- Take 100 µl of Y2HGold competent cells (Coolaber: cc309) thawed on ice, add 1 µg each of negative control: pGADT7 and pBridge-B-X, experimental group: pGADT7-A and pBridge-B-X, and 10 µl of Carrier DNA (95-100°C for 5 min, quick chill in ice water, repeat once), 500 µl of PEG/LiAc, mix by pipetting several times, incubate at 30°C for 30 min (invert 6-8 times at 15 min).
- Place the tube in a 42°C water bath for 15 min (invert 6-8 times at 7.5 min).
- Centrifuge at 5000 rpm for 40 s, discard the supernatant, resuspend in 400 µl of ddH2O, centrifuge for 30 s, discard the supernatant.
- Resuspend in 100 µl of sterile water, then take 50 µL each to spread on SD/-Leu/-Trp/-Met plates and SD/-Ade/-His/-Leu/-Trp/-Met/X-α-Gal/3-AT dropout plates (3-AT concentration as selected in auto-activation). Incubate at 30°C for 3 days, then observe colony growth.
- Note: Dilutions are 1:10, 1:100, 1:1000, 1:10,000, 1:100,000.
Supplement: Three-hybrid interaction verification dot-blotting (bait without auto-activation)
Y2HGold[pGADT7+pBridge-B-X] is spotted on SD/-Leu/-Trp (control group, can grow), SD/-Leu/-Trp/-His (experimental group), SD/-Leu/-Trp/-His/-Met (experimental group).
Three-hybrid interaction verification dot-blotting (bait with auto-activation)
Y2HGold[pGADT7+pBridge-B-X] is spotted on SD/-Leu/-Trp/-His/3-AT (control group), SD/-Leu/-Trp/-His/-Met/3-AT (control group); Y2HGold[pGADT7-A+pBridge-B-X] is spotted on SD/-Leu/-Trp/-His/3-AT (experimental group), SD/-Leu/-Trp/-His/-Met/3-AT (experimental group).
#### 5. Three-Hybrid Interaction Result Analysis
(Refer to the Y2HGold-pBridge System Yeast Three-Hybrid Interaction Verification Kit, Coolaber: YH3001-10T for discussion of results)
This is applicable only when A and B interact or do not interact, and the interaction relationship is known. The above experiments have determined whether the bait yeast strain has auto-activation, so the inhibition or promotion of A and B interaction by X can be analyzed in the presence or absence of auto-activation.

5.1 No Auto-Activation
The above experiments have determined that the bait has no auto-activation, so Y2HGold[pGADT7+pBridge-B-X] can be omitted as a control, and plates containing 3-AT can also be omitted. SD/-Leu/-Trp plates are used only as a control when X promotes the interaction between A and B (since no colonies are present on SD/-Leu/-Trp/-His plates). If the growth of Y2HGold[pGADT7-A+pBridge-B-X] on SD/-Leu/-Trp/-His and SD/-Leu/-Trp/-His/-Met plates is the same, then X has no effect on the relationship between A and B.
5.1.1 X Inhibits Interaction Between A and B
It is known from previous studies that A and B interact, and the bait has no auto-activation. Figure 1A, Y2HGold[pGADT7-A1+pBridge-B1-X] grows normally on SD/-Leu/-Trp plates (control), and the growth on SD/-Leu/-Trp/-His/-Met plates is weaker than on SD/-Leu/-Trp/-His plates (A1 and B1 interact), indicating that X inhibits the interaction between A1 and B1.
5.1.2 X Promotes Interaction Between A and B
It is known from previous studies that A and B do not interact, and the bait has no auto-activation. Figure 1B, Y2HGold[pGADT7-A2+pBridge-B2-X] grows normally on SD/-Leu/-Trp plates (control), does not grow on SD/-Leu/-Trp/-His plates (i.e., A2 and B2 do not interact), but can grow on SD/-Leu/-Trp/-His/-Met plates, indicating that X promotes the interaction between A2 and B2.
Three-hybrid interaction verification schematic (bait without auto-activation)
5.2 With Auto-Activation
The above experiments have determined that the bait has auto-activation, so plates containing 3-AT must be used to inhibit auto-activation of the bait and interaction between A and B. If the growth of Y2HGold[pGADT7-A+pBridge-B-X] on SD/-Leu/-Trp/-His and SD/-Leu/-Trp/-His/-Met plates is the same, then X has no effect on the relationship between A and B.
5.2.1 X Inhibits Interaction Between A and B
It is known from previous studies that A and B interact, and the bait has auto-activation. The concentration of 3-AT* on both plates is the same and can just inhibit the interaction of the double hybrid yeast (OD600=0.0002). Y2HGold[pGADT7-A3+pBridge-B3-X] grows weaker on SD/-Leu/-Trp/-His/-Met plates than on SD/-Leu/-Trp/-His plates (i.e., double hybrid yeast), and stronger than Y2HGold[pGADT7+pBridge-B3-X] (i.e., bait yeast), indicating that X inhibits the interaction between A3 and C3.
5.2.2 X Promotes Interaction Between A and B
It is known from previous studies that A and B do not interact, and the bait has auto-activation. Figure 2B, the concentration of 3-AT** on both plates is the same and can just inhibit the auto-activation of the bait yeast (OD600=0.0002). Y2HGold[pGADT7-A4+pBridge-B4-X] grows stronger on SD/-Leu/-Trp/-His/-Met plates than on SD/-Leu/-Trp/-His plates, and stronger than Y2HGold[pGADT7+pBridge-B4-X] (i.e., bait yeast), indicating that X promotes the interaction between A4 and B4.

Three-hybrid interaction verification schematic (bait with auto-activation).
Reference
Maruta N, Trusov Y, Botella JR. Yeast Three-Hybrid System for the Detection of Protein-Protein Interactions. In: Botella J, Botella M, eds. Plant Signal Transduction. Methods in Molecular Biology. Vol 1363. Humana Press, New York, NY; 2016. https://doi.org/10.1007/978-1-4939-3115-6_12
Cottier S, Mönig T, Wang Z, Svoboda J, Boland W, Kaiser M, Kombrink E. The yeast three-hybrid system as an experimental platform to identify proteins interacting with small signaling molecules in plant cells: potential and limitations. Front Plant Sci. 2011;2:101. doi: 10.3389/fpls.2011.00101
Glass F, et al. The Yeast Three-Hybrid System for Protein Interactions. Methods Mol Biol. 2018;1794:61-73. doi: 10.1007/978-1-4939-7871-7_5
Tirode F, Malaguti C, Romero F, Attar R, Camonis J, Egly JM. A conditionally expressed third partner stabilizes or prevents the formation of a transcriptional activator in a three-hybrid system. J Biol Chem. 1997;272:22995–22999.
SenGupta DJ, Zhang B, Kraemer B, Pochart P, Fields S, Wickens M. A three-hybrid system to detect RNA–protein interactions in vivo. Proc Natl Acad Sci. 1996;93:8496–8501.
Kraemer B, Zhang B, SenGupta D, Fields S, Wickens M. Using the yeast three-hybrid system to detect and analyze RNA–protein interactions. Methods Enzymol. 2000;328:297–321.
Appendix: Vectors used in yeast one hybrid(Y3H) experiments


1.Vector Name: pGADT7
Origin of Replication: pUC
Promoter: ADH1
Vector Size: 7987 bp
5' Sequencing Primer and Sequence: 5'-CTATTCGATGATGAAGATACCCC-3'
3' Sequencing Primer and Sequence: 5'-GTGAACTTGCGGGGTTTTTCAG-3'
Vector Resistance: Ampicillin
Selection Marker: LEU2
>pGADT7 vector sequence
TGCATGCCTGCAGGTCGAGATCCGGGATCGAAGAAATGATGGTAAATGAAATAGGAAATCAAGGAGCATGAAGGCAAAAGACAAATATAAGGGTCGAACGAAAAATAAAGTGAAAAGTGTTGATATGATGTATTTGGCTTTGCGGCGCCGAAAAAACGAGTTTACGCAATTGCACAATCATGCTGACTCTGTGGCGGACCCGCGCTCTTGCCGGCCCGGCGATAACGCTGGGCGTGAGGCTGTGCCCGGCGGAGTTTTTTGCGCCTGCATTTTCCAAGGTTTACCCTGCGCTAAGGGGCGAGATTGGAGAAGCAATAAGAATGCCGGTTGGGGTTGCGATGATGACGACCACGACAACTGGTGTCATTATTTAAGTTGCCGAAAGAACCTGAGTGCATTTGCAACATGAGTATACTAGAAGAATGAGCCAAGACTTGCGAGACGCGAGTTTGCCGGTGGTGCGAACAATAGAGCGACCATGACCTTGAAGGTGAGACGCGCATAACCGCTAGAGTACTTTGAAGAGGAAACAGCAATAGGGTTGCTACCAGTATAAATAGACAGGTACATACAACACTGGAAATGGTTGTCTGTTTGAGTACGCTTTCAATTCATTTGGGTGTGCACTTTATTATGTTACAATATGGAAGGGAACTTTACACTTCTCCTATGCACATATATTAATTAAAGTCCAATGCTAGTAGAGAAGGGGGGTAACACCCCTCCGCGCTCTTTTCCGATTTTTTTCTAAACCGTGGAATATTTCGGATATCCTTTTGTTGTTTCCGGGTGTACAATATGGACTTCCTCTTTTCTGGCAACCAAACCCATACATCGGGATTCCTATAATACCTTCGTTGGTCTCCCTAACATGTAGGTGGCGGAGGGGAGATATACAATAGAACAGATACCAGACAAGACATAATGGGCTAAACAAGACTACACCAATTACACTGCCTCATTGATGGTGGTACATAACGAACTAATACTGTAGCCCTAGACTTGATAGCCATCATCATATCGAAGTTTCACTACCCTTTTTCCATTTGCCATCTATTGAAGTAATAATAGGCGCATGCAACTTCTTTTCTTTTTTTTTCTTTTCTCTCTCCCCCGTTGTTGTCTCACCATATCCGCAATGACAAAAAAATGATGGAAGACACTAAAGGAAAAAATTAACGACAAAGACAGCACCAACAGATGTCGTTGTTCCAGAGCTGATGAGGGGTATCTCGAAGCACACGAAACTTTTTCCTTCCTTCATTCACGCACACTACTCTCTAATGAGCAACGGTATACGGCCTTCCTTCCAGTTACTTGAATTTGAAATAAAAAAAAGTTTGCTGTCTTGCTATCAAGTATAAATAGACCTGCAATTATTAATCTTTTGTTTCCTCGTCATTGTTCTCGTTCCCTTTCTTCCTTGTTTCTTTTTCTGCACAATATTTCAAGCTATACCAAGCATACAATCAACTCCAAGCTTTGCAAAGATGGATAAAGCGGAATTAATTCCCGAGCCTCCAAAAAAGAAGAGAAAGGTCGAATTGGGTACCGCCGCCAATTTTAATCAAAGTGGGAATATTGCTGATAGCTCATTGTCCTTCACTTTCACTAACAGTAGCAACGGTCCGAACCTCATAACAACTCAAACAAATTCTCAAGCGCTTTCACAACCAATTGCCTCCTCTAACGTTCATGATAACTTCATGAATAATGAAATCACGGCTAGTAAAATTGATGATGGTAATAATTCAAAACCACTGTCACCTGGTTGGACGGACCAAACTGCGTATAACGCGTTTGGAATCACTACAGGGATGTTTAATACCACTACAATGGATGATGTATATAACTATCTATTCGATGATGAAGATACCCCACCAAACCCAAAAAAAGAGATCTTTAATACGACTCACTATAGGGCGAGCGCCGCCATGGAGTACCCATACGACGTACCAGATTACGCTCATATGGCCATGGAGGCCAGTGAATTCCACCCGGGTGGGCATCGATACGGGATCCATCGAGCTCGAGCTGCAGATGAATCGTAGATACTGAAAAACCCCGCAAGTTCACTTCAACTGTGCATCGTGCACCATCTCAATTTCTTTCATTTATACATCGTTTTGCCTTCTTTTATGTAACTATACTCCTCTAAGTTTCAATCTTGGCCATGTAACCTCTGATCTATAGAATTTTTTAAATGACTAGAATTAATGCCCATCTTTTTTTTGGACCTAAATTCTTCATGAAAATATATTACGAGGGCTTATTCAGAAGCTTTGGACTTCTTCGCCAGAGGTTTGGTCAAGTCTCCAATCAAGGTTGTCGGCTTGTCTACCTTGCCAGAAATTTACGAAAAGATGGAAAAGGGTCAAATCGTTGGTAGATACGTTGTTGACACTTCTAAATAAGCGAATTTCTTATGATTTATGATTTTTATTATTAAATAAGTTATAAAAAAAATAAGTGTATACAAATTTTAAAGTGACTCTTAGGTTTTAAAACGAAAATTCTTATTCTTGAGTAACTCTTTCCTGTAGGTCAGGTTGCTTTCTCAGGTATAGCATGAGGTCGCTCTTATTGACCACACCTCTACCGGCCGGTCGAAATTCCCCTACCCTATGAACATATTCCATTTTGTAATTTCGTGTCGTTTCTATTATGAATTTCATTTATAAAGTTTATGTACAAATATCATAAAAAAAGAGAATCTTTTTAAGCAAGGATTTTCTTAACTTCTTCGGCGACAGCATCACCGACTTCGGTGGTACTGTTGGAACCACCTAAATCACCAGTTCTGATACCTGCATCCAAAACCTTTTTAACTGCATCTTCAATGGCCTTACCTTCTTCAGGCAAGTTCAATGACAATTTCAACATCATTGCAGCAGACAAGATAGTGGCGATAGGGTTGACCTTATTCTTTGGCAAATCTGGAGCAGAACCGTGGCATGGTTCGTACAAACCAAATGCGGTGTTCTTGTCTGGCAAAGAGGCCAAGGACGCAGATGGCAACAAACCCAAGGAACCTGGGATAACGGAGGCTTCATCGGAGATGATATCACCAAACATGTTGCTGGTGATTATAATACCATTTAGGTGGGTTGGGTTCTTAACTAGGATCATGGCGGCAGAATCAATCAATTGATGTTGAACCTTCAATGTAGGAAATTCGTTCTTGATGGTTTCCTCCACAGTTTTTCTCCATAATCTTGAAGAGGCCAAAACATTAGCTTTATCCAAGGACCAAATAGGCAATGGTGGCTCATGTTGTAGGGCCATGAAAGCGGCCATTCTTGTGATTCTTTGCACTTCTGGAACGGTGTATTGTTCACTATCCCAAGCGACACCATCACCATCGTCTTCCTTTCTCTTACCAAAGTAAATACCTCCCACTAATTCTCTGACAACAACGAAGTCAGTACCTTTAGCAAATTGTGGCTTGATTGGAGATAAGTCTAAAAGAGAGTCGGATGCAAAGTTACATGGTCTTAAGTTGGCGTACAATTGAAGTTCTTTACGGATTTTTAGTAAACCTTGTTCAGGTCTAACACTACCTGTACCCCATTTAGGACCACCCACAGCACCTAACAAAACGGCATCAGCCTTCTTGGAGGCTTCCAGCGCCTCATCTGGAAGTGGGACACCTGTAGCTTCGATAGCAGCACCACCAATTAAATGATTTTCGAAATCGAACTTGACATTGGAACGAACATCAGAAATAGCTTTAAGAACCTTAATGGCTTCGGCTGTGATTTCTTGACCAACGTGGTCACCTGGCAAAACGACGATCTTCTTAGGGGCAGACATTAGAATGGTATATCCTTGAAATATATATATATATTGCTGAAATGTAAAAGGTAAGAAAAGTTAGAAAGTAAGACGATTGCTAACCACCTATTGGAAAAAACAATAGGTCCTTAAATAATATTGTCAACTTCAAGTATTGTGATGCAAGCATTTAGTCATGAACGCTTCTCTATTCTATATGAAAAGCCGGTTCCGGCGCTCTCACCTTTCCTTTTTCTCCCAATTTTTCAGTTGAAAAAGGTATATGCGTCAGGCGACCTCTGAAATTAACAAAAAATTTCCAGTCATCGAATTTGATTCTGTGCGATAGCGCCCCTGTGTGTTCTCGTTATGTTGAGGAAAAAAATAATGGTTGCTAAGAGATTCGAACTCTTGCATCTTACGATACCTGAGTATTCCCACAGTTGGGGGATCTCGACTCTAGCTAGAGGATCAATTCGTAATCATGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGATAACTTCGTATAATGTATGCTATACGAAGTTATTAGGTCTGAAGAGGAGTTTACGTCCAGCCAAGCTAGCTTGGCTGCAGGTCGAGCGGCCGCGATCCGGAACCCTTAATATAACTTCGTATAATGTATGCTATACGAAGTTATCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATAACGCATTTAAGCATAAACACGCACTATGCCGTTCTTCTCATGTATATATATATACAGGCAACACGCAGATATAGGTGCGACGTGAACAGTGAGCTGTATGTGCGCAGCTCGCGTTGCATTTTCGGAAGCGCTCGTTTTCGGAAACGCTTTGAAGTTCCTATTCCGAAGTTCCTATTCTCTAGCTAGAAAGTATAGGAACTTCAGAGCGCTTTTGAAAACCAAAAGCGCTCTGAAGACGCACTTTCAAAAAACCAAAAACGCACCGGACTGTAACGAGCTACTAAAATATTGCGAATACCGCTTCCACAAACATTGCTCAAAAGTATCTCTTTGCTATATATCTCTGTGCTATATCCCTATATAACCTACCCATCCACCTTTCGCTCCTTGAACTTGCATCTAAACTCGACCTCTACATTTTTTATGTTTATCTCTAGTATTACTCTTTAGACAAAAAAATTGTAGTAAGAACTATTCATAGAGTGAATCGAAAACAATACGAAAATGTAAACATTTCCTATACGTAGTATATAGAGACAAAATAGAAGAAACCGTTCATAATTTTCTGACCAATGAAGAATCATCAACGCTATCACTTTCTGTTCACAAAGTATGCGCAATCCACATCGGTATAGAATATAATCGGGGATGCCTTTATCTTGAAAAAATGCACCCGCAGCTTCGCTAGTAATCAGTAAACGCGGGAAGTGGAGTCAGGCTTTTTTTATGGAAGAGAAAATAGACACCAAAGTAGCCTTCTTCTAACCTTAACGGACCTACAGTGCAAAAAGTTATCAAGAGACTGCATTATAGAGCGCACAAAGGAGAAAAAAAGTAATCTAAGATGCTTTGTTAGAAAAATAGCGCTCTCGGGATGCATTTTTGTAGAACAAAAAAGAAGTATAGATTCTTTGTTGGTAAAATAGCGCTCTCGCGTTGCATTTCTGTTCTGTAAAAATGCAGCTCAGATTCTTTGTTTGAAAAATTAGCGCTCTCGCGTTGCATTTTTGTTTTACAAAAATGAAGCACAGATTCTTCGTTGGTAAAATAGCGCTTTCGCGTTGCATTTCTGTTCTGTAAAAATGCAGCTCAGATTCTTTGTTTGAAAAATTAGCGCTCTCGCGTTGCATTTTTGTTCTACAAAATGAAGCACAGATGCTTCGTTGCT

2.Vector Name: pBridge
Promoter: ADH1
Origin of Replication: 2μori, ColE1 ori
Vector Size: 6526bp
5' Sequencing Primer and Sequence: 5'-TCATCGGAAGAGAGTAGT-3'
3' Sequencing Primer and Sequence: 5'-AATTTATTTCTTTTCGGATAA-3'
Vector Resistance: Ampicillin
Selection Marker: TRP1
>pBridge vector sequence
GCTTGCATGCAACTTCTTTTCTTTTTTTTTCTTTTCTCTCTCCCCCGTTGTTGTCTCACCATATCCGCAATGACAAAAAAATGATGGAAGACACTAAAGGAAAAAATTAACGACAAAGACAGCACCAACAGATGTCGTTGTTCCAGAGCTGATGAGGGGTATCTCGAAGCACACGAAACTTTTTCCTTCCTTCATTCACGCACACTACTCTCTAATGAGCAACGGTATACGGCCTTCCTTCCAGTTACTTGAATTTGAAATAAAAAAAAGTTTGCTGTCTTGCTATCAAGTATAAATAGACCTGCAATTATTAATCTTTTGTTTCCTCGTCATTGTTCTCGTTCCCTTTCTTCCTTGTTTCTTTTTCTGCACAATATTTCAAGCTATACCAAGCATACAATCAACTCCAAGCTTGAAGCAAGCCTCCTGAAAGATGAAGCTACTGTCTTCTATCGAACAAGCATGCGATATTTGCCGACTTAAAAAGCTCAAGTGCTCCAAAGAAAAACCGAAGTGCGCCAAGTGTCTGAAGAACAACTGGGAGTGTCGCTACTCTCCCAAAACCAAAAGGTCTCCGCTGACTAGGGCACATCTGACAGAAGTGGAATCAAGGCTAGAAAGACTGGAACAGCTATTTCTACTGATTTTTCCTCGAGAAGACCTTGACATGATTTTGAAAATGGATTCTTTACAGGATATAAAAGCATTGTTAACAGGATTATTTGTACAAGATAATGTGAATAAAGATGCCGTCACAGATAGATTGGCTTCAGTGGAGACTGATATGCCTCTAACATTGAGACAGCATAGAATAAGTGCGACATCATCATCGGAAGAGAGTAGTAACAAAGGTCAAAGACAGTTGACTGTATCGCCGGAATTCCCGGGGATCCGTCGACCTGCAGCCAAGCTAATTCCGGGCGAATTTCTTATGATTTATGATTTTTATTATTAAATAAGTTATAAAAAAAATAAGTGTATACAAATTTTAAAGTGACTCTTAGGTTTTAAAACGAAAATTCTTATTCTTGAGTAACTCTTTCCTGTAGGTCAGGTTGCTTTCTCAGGTATAGCATGAGGTCGCTCTTATTGACCACACCTCTACCGGCATGCCGGCAAGTGCACAAACAATACTTAAATAAATACTACTCAGTAATAACCTATTTCTTAGCATTTTTGACGAAATTTGCTATTTTGTTAGAGTCTTTTACACCATTTGTCTCCACACCTCCGCTTACATCAACACCAATAACGCCATTTAATCTAAGCGCATCACCAACATTTTCTGGCGTCAGTCCACCAGCTAACATAAAATGTAAGCTTTCGGGGCTCTCTTGCCTTCCAACCCAGTCAGAAATCGAGTTCCAATCCAAAAGTTCACCTGTCCCACCTGCTTCTGAATCAAACAAGGGAATAAACGAATGAGGTTTCTGTGAAGCTGCACTGAGTAGTATGTTGCAGTCTTTTGGAAATACGAGTCTTTTAATAACTGGCAAACCGAGGAACTCTTGGTATTCTTGCCACGACTCATCTCCATGCAGTTGGACGATATCAATGCCGTAATCATTGACCAGAGCCAAAACATCCTCCTTAGGTTGATTACGAAACACGCCAACCAAGTATTTCGGAGTGCCTGAACTATTTTTATATGCTTTTACAAGACTTGAAATTTTCCTTGCAATAACCGGGTCAATTGTTCTCTTTCTATTGGGCACACATATAATACCCAGCAAGTCAGCATCGGAATCTAGAGCACATTCTGCGGCCTCTGTGCTCTGCAAGCCGCAAACTTTCACCAATGGACCAGAACTACCTGTGAAATTAATAACAGACATACTCCAAGCTGCCTTTGTGTGCTTAATCACGTATACTCACGTGCTCAATAGTCACCAATGCCCTCCCTCTTGGCCCTCTCCTTTTCTTTTTTCGACCGAATTAATTCGTAATCATGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGGAAGATCCGAGGCCTAGCTTCTAATTCTTCCAACATACAATGGGAGTTTGGCCGAGTGGTTTAAGGCGTCAGATTTAGGTGGATTTAACCTCTAAAATCTCTGATATCTTCGGATGCAAGGGTTCGAATCCCTTAGCTCTCATTATTTTTTGCTTTTTCTCTTGAGGTCACATGATCGCAAAATGGCAAATGGCACGTGAAGCTGTCGATATTGGGGAACTGTGGTGGTTGGCAAATGACTAATTAAGTTAGTCAAGGCGCCATCCTCATGAAAACTGTGTAACATAATAACCGAAGTGTCGAAAAGGTGGCACCTTGTCCAATTGAACACGCTCGATGAAAAAAATAAGATATATATAAGGTTAAGTAAAGCGTCTGTTAGAAAGGAAGTTTTTCCTTTTTCTTGCTCTCTTGTCTTTTCATCTACTATTTCCTTCGTGTAATACAGGGTCGTCAGATACATAGATACAATTCTATTACCCCCATCCATACAATGGGCCATATGGCTTCTAGCTATCCTTATGACGTGCCTGACTATGCCAGCCTGGGAGGACCTTCTAGTCCTAAGAAGAAGAGAAAGGTGGCGGCCGCATTAGCCCGAAGATCTTCGGGCTGATCTCCCATGTCTCTACTGGTGGTGGTGCTTCTTTGGAATTATTGGAAGGTAAGGAATTGCCAGGTGTTGCTTTCTTATCCGAAAAGAAATAAATTGAATTGAATTGAAATCGATAGATCAATTTTTTTCTTTTCTCTTTCCCCATCCTTTACGCTAAAATAATAGTTTATTTTATTTTTTGAATATTTTTTATTTATATACGTATATATAGACTATTATTTATCTTTTAATGATTATTAAGATTTTTATTAAAAAAAAATTCGCTCCTCTTTTAATGCCTTTATGCAGTTTTTTTTTCCCATTCGATATTTCTATGTTCGGGTTCAGCGTATTTTAAGTTTAATAACTCGAAAATTCTGCGTTCGTTAAAGCTAGGCCTCGGATCTTCCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATAACGCATTTAAGCATAAACACGCACTATGCCGTTCTTCTCATGTATATATATATACAGGCAACACGCAGATATAGGTGCGACGTGAACAGTGAGCTGTATGTGCGCAGCTCGCGTTGCATTTTCGGAAGCGCTCGTTTTCGGAAACGCTTTGAAGTTCCTATTCCGAAGTTCCTATTCTCTAGCTAGAAAGTATAGGAACTTCAGAGCGCTTTTGAAAACCAAAAGCGCTCTGAAGACGCACTTTCAAAAAACCAAAAACGCACCGGACTGTAACGAGCTACTAAAATATTGCGAATACCGCTTCCACAAACATTGCTCAAAAGTATCTCTTTGCTATATATCTCTGTGCTATATCCCTATATAACCTACCCATCCACCTTTCGCTCCTTGAACTTGCATCTAAACTCGACCTCTACATTTTTTATGTTTATCTCTAGTATTACTCTTTAGACAAAAAAATTGTAGTAAGAACTATTCATAGAGTGAATCGAAAACAATACGAAAATGTAAACATTTCCTATACGTAGTATATAGAGACAAAATAGAAGAAACCGTTCATAATTTTCTGACCAATGAAGAATCATCAACGCTATCACTTTCTGTTCACAAAGTATGCGCAATCCACATCGGTATAGAATATAATCGGGGATGCCTTTATCTTGAAAAAATGCACCCGCAGCTTCGCTAGTAATCAGTAAACGCGGGAAGTGGAGTCAGGCTTTTTTTATGGAAGAGAAAATAGACACCAAAGTAGCCTTCTTCTAACCTTAACGGACCTACAGTGCAAAAAGTTATCAAGAGACTGCATTATAGAGCGCACAAAGGAGAAAAAAAGTAATCTAAGATGCTTTGTTAGAAAAATAGCGCTCTCGGGATGCATTTTTGTAGAACAAAAAAGAAGTATAGATTCTTTGTTGGTAAAATAGCGCTCTCGCGTTGCATTTCTGTTCTGTAAAAATGCAGCTCAGATTCTTTGTTTGAAAAATTAGCGCTCTCGCGTTGCATTTTTGTTTTACAAAAATGAAGCACAGATTCTTCGTTGGTAAAATAGCGCTTTCGCGTTGCATTTCTGTTCTGTAAAAATGCAGCTCAGATTCTTTGTTTGAAAAATTAGCGCTCTCGCGTTGCATTTTTGTTCTACAAAATGAAGCACAGATGCTTCGTT
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.
Tips for asking effective questions
+ Description
Write a detailed description. Include all information that will help others answer your question including experimental processes, conditions, and relevant images.
Share
Bluesky
X
Copy link