Published: Vol 7, Iss 18, Sep 20, 2017 DOI: 10.21769/BioProtoc.2560 Views: 8705
Reviewed by: Jihyun KimTzvetina BrumbarovaAnonymous reviewer(s)
Protocol Collections
Comprehensive collections of detailed, peer-reviewed protocols focusing on specific topics
Related protocols
Enzymatic Assays and Enzyme Histochemistry of Tuta absoluta Feeding on Tomato Leaves
Rim Hamza [...] Luis A. Cañas
Sep 5, 2018 6996 Views
In situ Dephosphorylation Assay with Recombinant Nil Phosphatase
Nilay Nandi [...] Helmut Krämer
Sep 20, 2022 1487 Views
An Optimized Enzyme-Coupled Spectrophotometric Method for Measuring Pyruvate Kinase Kinetics
Saurabh Upadhyay
Aug 20, 2025 853 Views
Abstract
The intestine is a central organ required for the digestion of food, the absorption of nutrients and for fighting against aggressors ingested along with the food. Impairment of gut physiology following mucosal damages impacts its digestive capacities that consequently will affect growth, wellbeing or even survival of the individual. Hence, the assessment of intestinal functions encompasses, among others, the monitoring of its integrity, its cellular renewing, its immune defenses, the production of enteroendocrine hormones and its digestive capacities. Here, we describe in detail how to assess the activity of the proteases secreted in the intestinal lumen of adult Drosophila melanogaster flies. This method can also be used for larval intestines. The present protocol is adapted and improved from the Sigma-Aldrich’s protocol proposed in the ‘Protease Fluorescent Detection Kit’ (Product code PF0100).
Keywords: Drosophila melanogasterBackground
The intestine is subjected to many stresses such as feasting, fasting, chemicals, pathogens, injuries etc. The gut is able to overcome such stresses by maintaining its physiological equilibrium named homeostasis. To perceive the incoming stress and to yield an adapted answer to maintain gut functions, the intestine has developed robust and conserved mechanisms such as local innate immune defenses and tissue regeneration (Royet and Charroux, 2013; Bonfini et al., 2016). However, the maintenance of gut homeostasis can be compromised in certain cases. For example, during aging, there is an overall decline in tissue homeostasis maintenance with the presence of numerous immature or misdifferentiated cells (Jasper, 2015; Hu and Jasper, 2017). Another case where homeostasis can also be disrupted is upon exposure to xenobiotic or pathogens (such as opportunistic bacteria) that damage or kill cells impairing their functions (Bonfini et al., 2016). Hence, during the above cited examples, the digestive capacities of the gut are reduced. Moreover, during the process of tissue regeneration itself that produces many precursor cells the digestive capacities are also reduced (Loudhaief et al., 2017). Therefore, the assessment of the digestive capacities of the gut are of prime importance to evaluate the potential impact that can have an aggression on the gut physiology. Importantly, gut digestive function disruption may have both local and systemic metabolic consequences that will affect growth, immune defenses, reproduction, wellbeing, longevity…. Dietary proteins are essential for many (if not all) physiological functions (Soultoukis and Partridge, 2016). Imbalanced amino-acid absorption by the intestine can have dramatic consequences on growth for example. Protein digestion being essential to generate absorbable amino-acids by the enterocytes, the measurement of luminal protease activity appears a good readout to evaluate the physiological state of the intestine and its capacity to fulfill its digestive functions.
Materials and Reagents
Equipment
Software
Procedure
Data analysis
Notes
The protocol described here can easily be transposed to Drosophila larval midgut and even to any other insect midguts.
Recipes
Acknowledgments
We would like thank David Pauron for his help at the beginning of the protocol setup. MPNE was supported by INRA. RL was supported by the Fondation pour la Recherche Médicale (FRM) and Université Côte d'Azur (UCA) and AG was supported by the CNRS.
References
Article Information
Copyright
© 2017 The Authors; exclusive licensee Bio-protocol LLC.
How to cite
Nawrot-Esposito, M., Loudhaief, R. and Gallet, A. (2017). Protease Activity Assay in Fly Intestines. Bio-protocol 7(18): e2560. DOI: 10.21769/BioProtoc.2560.
Category
Biochemistry > Protein > Activity
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.
Tips for asking effective questions
+ Description
Write a detailed description. Include all information that will help others answer your question including experimental processes, conditions, and relevant images.
Share
Bluesky
X
Copy link