Published: Vol 7, Iss 15, Aug 5, 2017 DOI: 10.21769/BioProtoc.2427 Views: 8923
Reviewed by: Anonymous reviewer(s)
Protocol Collections
Comprehensive collections of detailed, peer-reviewed protocols focusing on specific topics
Related protocols
A Fluorescence-Based Flippase Assay to Monitor Lipid Transport by Drs2-Cdc50
Inja M. Van Der Linden [...] Huriye D. Uzun
Jul 20, 2025 1880 Views
Fluorescence Polarization-Based High-Throughput Screening Assay for Inhibitors Targeting Cathepsin L
Keyu Guo [...] Shuyi Si
Jul 20, 2025 860 Views
An Optimized Enzyme-Coupled Spectrophotometric Method for Measuring Pyruvate Kinase Kinetics
Saurabh Upadhyay
Aug 20, 2025 855 Views
Abstract
Proteins that bind to and disrupt cell membranes may target specific phospholipids. Here we describe a protocol to identify the lipid targets of proteins and biomolecules. First, we describe a screen to identify lipids in membranes that are specifically bound by the biomolecule of interest. Second, we describe a method for determining if the presence of these lipids within membranes is necessary for membrane disruption. The methods described here were used to determine that the malaria vaccine candidate CelTOS disrupts cell membranes by specifically targeting phosphatidic acid (Jimah et al., 2016). This protocol has a companion protocol: ‘Liposome disruption assay to examine lytic properties of biomolecules’ which can be applied to examine the ability of the biomolecule to disrupt membranes composed of the lipid target identified by following this protocol (Jimah et al., 2017).
Keywords: MembraneBackground
Proteins and biomolecules with membrane disruption activities, such as pore formation or membrane fusion, may target specific lipids within membranes. Examples of lipid-specific pore-formation include Plasmodium CelTOS that depends on phosphatidic acid for pore formation, and the cholesterol dependent cytolysins (Jimah et al., 2016; Lukoyanova et al., 2016). CelTOS (cell traversal protein for ookinetes and sporozoites) is a malaria parasite protein that disrupts host cell membranes by pore formation to enable the exit of parasites from invaded host cells during cell traversal (Kariu et al., 2006; Jimah et al., 2016). Cholesterol dependent cytolysins are a large class of pore-forming proteins, including virulence factors of gram positive bacteria such as pneumolysin and listeriolysin (Lukoyanova et al., 2016). Identifying the specific lipids targeted informs the mechanism of membrane disruption that underlies biological function and role of proteins and biomolecules.
Materials and Reagents
Note: See the ‘Notes’ section for a list of materials and reagents used in the companion protocol ‘Liposome disruption assay to examine lytic properties of biomolecules’ that is recommended for follow up experiments (Jimah et al., 2017).
Equipment
Note: See the ‘Notes’ section for a list of equipment used in the companion protocol ‘Liposome disruption assay to examine lytic properties of biomolecules’ that is recommended for follow up experiments (Jimah et al., 2017).
Procedure
Screen to identify specific membrane lipid binding by biomolecules of interest
Data analysis
Data analysis: Screen to identify membrane lipids targeted for membrane disruption by biomolecules
Note: Please refer to the companion protocol ‘Liposome disruption assay to examine lytic properties of biomolecules’ for a detailed description of data analysis. (Jimah et al., 2017).
Notes
Recipes
Acknowledgments
This work was supported by the Burroughs Wellcome Fund (to NHT) and National Institutes of Health (R56 AI080792 to NHT). This protocol was adapted from Jimah et al., 2016.
References
Article Information
Copyright
Jimah et al. This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).
How to cite
Readers should cite both the Bio-protocol article and the original research article where this protocol was used:
Category
Biochemistry > Protein > Activity
Microbiology > Microbe-host interactions > In vitro model
Biochemistry > Lipid > Lipid-protein interaction
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.
Tips for asking effective questions
+ Description
Write a detailed description. Include all information that will help others answer your question including experimental processes, conditions, and relevant images.
Share
Bluesky
X
Copy link