Fluorometric Estimation of Glutathione in Cultured Microglial Cell Lysate    

How to cite Favorites 2 Q&A Share your feedback Cited by

In this protocol

Original research article

A brief version of this protocol appeared in:
Scientific Reports
Jul 2016



Glutathione is one of the major antioxidant defense components present in cells. It is predominantly present as reduced glutathione (GSH) and converted into oxidized glutathione (GSSG) while reducing the free radicals like hydroxyl ions (OH-). For the measurement of GSH and GSSG, o-phthalaldehyde (OPT) has been used as a fluorescent reagent. O-phthalaldehyde has an ability to react specifically with GSH at pH 8 and GSSG at pH 12 respectively. N-ethylmaleimide (NEM) has been used to prevent auto-oxidation of GSH during measurement of GSSG in the present protocol. The original protocol by Hissin and Hilf was developed for glutathione estimation in Rat liver tissue. The present protocol has been standardized following Hissin and Hilf (1976) for the estimation of glutathione in cultured microglial cell lysate but it can also be used for other mammalian cell lysate. In our lab same protocol has been used for the estimation of glutathione in the whole cell lysate of murine neuroblastoma cell, N2a.

Keywords: Glutathione, Antioxidant, Free radical, Microglia (N9), o-Phthalaldehyde, N-ethylmaleimide


This method was published by Hissin and Hilf in analytical biochemistry way back in 1976 (Hissin and Hilf, 1976). There are methods available to detect GSH accurately however; due to readily oxidative conversion of GSH into GSSG most of the methods give an overestimate of GSSG. Cohen and Lyle (1966) solved the problem by using NEM to prevent oxidative conversion of GSH into GSSG and also preventing GSH to react with OPT during GSSG estimation (Figures 1 and 2). We have used this simple and reliable method to detect GSH and GSSG in our experimental system (microglial cell lysate). The main advantage of this protocol is that, it does not involve sophisticated instrument like high performance liquid chromatography (HPLC) which also needs sufficient expertise to handle as compared to plate reader which is more commonly available and easy to operate (Rahman et al., 2006).

Figure 1. Schematic of chemical reaction during GSH estimation in the N9 cell lysate

Figure 2. Schematic of chemical reaction during GSSG estimation in the N9 cell lysate

Materials and Reagents

  1. Pipette tips (Corning, Axygen®, catalog number: T-1005-WB-C-L )
  2. 0.22 μm filter
  3. 6 well culture plate (SRL LIFE SCIENCES, catalog number: 30006 )
  4. Culture flask
  5. 1.5 ml centrifuge tube (Corning, Axygen®, catalog number: MCT-150-R )
  6. 0.5 ml tube (Corning, Axygen®, catalog number: 14-222-292 )
  7. 96 well plate (SPL life sciences, catalog number: 30096 )
  8. Disposable plastic cell scraper (SRL LIFE SCIENCES, catalog number: 90020 )
  9. Cell line: In the present protocol mouse microglial cell line, N9 has been used, which was kindly gifted by Dr. Anirban Basu, National Brain Research Centre (NBRC), India (Singh et al., 2016). N9 cell line was developed by retroviral transfection of primary microglia cells with the v-myc or v-mil oncogenes of the avian retrovirus MH2. Cells were cultured in DMEM/F12 medium supplemented with 10% FBS and 1% penicillin-streptomycin in a 5% CO2 incubator at 37 °C
  10. DMEM/F12 (Sigma-Aldrich, catalog number: 56498C )
  11. Sodium bicarbonate
  12. Double distilled water
  13. Fetal bovine serum (FBS) (Genetix Biotech, Cell cloneTM, catalog number: CCS-500-SA-U )
  14. Penicillin-streptomycin (Pen-Strep) (Thermo Fisher Scientific, GibcoTM, catalog number: 10378016 )
  15. Protease inhibitor cocktail (Sigma-Aldrich, catalog number: P8340 )
  16. Bradford reagent (Bio-Rad Laboratories, catalog number: 5000006 )
  17. Tri-chloroacetic acid (TCA) (Sigma-Aldrich, catalog number: T6399 )
  18. o-Phthalaldehyde (Sigma-Aldrich, catalog number: P1378 )
  19. N-ethylmaleimide (Sigma-Aldrich, catalog number: E3876 )
  20. Glutathione reduced (GSH) (Sigma-Aldrich, catalog number: G4251 )
  21. Glutathione oxidized (GSSG) (Sigma-Aldrich, catalog number: G4376 )
  22. Sodium hydroxide (NaOH) (Sigma-Aldrich, catalog number: S5881 )
  23. Potassium phosphate monobasic (KH2PO4) (Sigma-Aldrich, catalog number: P5655 )
  24. Dipotassium phosphate dibasic (K2HPO4) (Sigma-Aldrich, catalog number: P3786 )
  25. Potassium phosphate dibasic trihydrate (K2HPO4·3H2O)
  26. EDTA disodium salt (Sigma-Aldrich, catalog number: E5513 )
    Note: This product has been discontinued.
  27. 100% ethanol (Merck, catalog number: 1009831011 )
  28. Methanol (SRL Laboratories, catalog number. 65524 )
  29. 0.1 M potassium phosphate EDTA buffer (KPE buffer) (see Recipes)
  30. 50% trichloroacetic acid (see Recipes)
  31. o-Phthaldehyde solution (10 mg/ml) (see Recipes)
  32. 0.4 M N-ethylmaleimide (see Recipes)
  33. 0.1 N sodium hydroxide (see Recipes)


  1. 1 ml and 200 µl pipettes (Eppendorf)
  2. Table top centrifuge (Sigma-zentrifuges, model: Sigma 3-18KS )
  3. Microplate reader (BMG LABTECH, model: FLUOstar Omega )
  4. CO2 incubator (Thermo Fisher Scientific, Thermo ScientificTM, model: FormaTM Steri-CycleTM CO2 Incubators )
  5. Sonicator (Sonics & Materials, model: VC 505 )


  1. Mars data analysis software, ver. 1.01 (Data analysis software for Microplate reader)


Flow diagram of the procedure (Figure 3)

Figure 3. Flow diagram of the procedure for the estimation of glutathione in mouse microglial cell line, N9

  1. Media preparation and cell culture
    1. For 1 L medium, 12 g DMEM/F12, 2.44 g sodium bicarbonate is dissolved in 890 ml of double distilled water and then 100 ml FBS along with 10 ml Pen-Strep is added. Finally media is filtered through 0.22 μm filter.
    2. N9 cells are seeded at a density of 1 x 106/2 ml in a 6-well culture plate and grown for 16-18 h in complete culture medium (DMEM/F12 medium supplemented with 10% FBS and 1% Pen-Strep).
    3. N9 cells are passaged after every 48 h and used till 6-7 passage after thawing.
    Note: If any treatment is given, please ensure that dose and duration of treatment is not toxic for cells. 
  2. Cell harvesting and lysis
    1. Remove culture medium and wash the cells with phosphate buffered saline (PBS). Add ice cold 0.1 M potassium phosphate buffer with EDTA (KPE buffer, 1 ml) to the each well and cells are dislodged from the surface of culture flask with the help of cell scraper and collected in a 1.5 ml centrifuge tube.
    2. Centrifuge the cell suspension at 350 x g for 5 min at 4 °C.
    3. Resulting cell pellet is resuspended in 200 µl KPE buffer with 1% protease inhibitor cocktail (PIC) and lysed by sonication for 5 sec pulse at 25 W two times on ice.
    Note: Cell scrapper is preferred instead of enzymatic dissociation to minimize the handling time. Besides, for enzymatic dissociation cells needs incubation in 37 °C whereas ice cold buffer can be used while using scrapper which is desirable during preparing cell lysate to keep structure and function of the protein unaltered.
  3. Protein sample preparation and estimation
    After sonication, lysed samples are centrifuged at 18,000 x g for 10 min at 4 °C and the resulting supernatants are collected in separate pre-cooled 1.5 ml centrifuge tubes.
    Keep 10 µl samples in 0.5 ml tubes for protein estimation by Bradford reagent.
  4. Protein precipitation
    After protein estimation, 10 µg protein sample is precipitated. Initially 80 µl protein sample is mixed with 20 µl trichloroacetic acid (TCA) (50% stock concentration), vortexed and kept in ice for 10 min. Protein sample with TCA is centrifuged at 9,100 x g for 10 min at 4 °C, the supernatant is transferred into a fresh 1.5 ml centrifuge tube.
  5. GSH and GSSG estimation
    1. GSH estimation
      Mix 10 µl supernatant with equal volume of OPT (1 mg/ml) and 180 µl KPE buffer (pH-8) in a black 96 well plate.
    2. GSSG estimation
      1. Transfer 50 µl of the supernatant into a new centrifuge tube, add 0.5 µl N-ethylmaleimide (stock concentration: 4 M) and mix thoroughly.
      2. Incubate for 30 min at room temperature to inhibit GSH.
      3. Add 10 µl of this sample, 10 µl OPT and 180 µl 0.1 N NaOH (pH-12) in a black 96 well plate.
        Note: Use multichannel pipette to add OPT and KPE buffer mixture in the 96 well plate to minimize the time lapse.
  6. Incubate for 10 min in the dark at room temperature.
  7. Measure the fluorescence at λex: 355 nm and λem: 420 nm in a microplate reader.

Data analysis

  1. Standards preparation for GSH and GSSG
    GSH and GSSG stock solution is prepared at a concentration of 1 mg/ml in KPE buffer and diluted 100 times to 10 µg/ml. 800 µl of 10 µg/ml solution is mixed with 200 µl KPE buffer to make standard GSH and GSSG concentration of 26.4 nmol/ml. From this concentration a series of two fold serial dilutions are (13.2 nmol/ml, 6.6 nmol/ml, 3.3 nmol/ml till 0.103 nmol/ml) prepared in KPE buffer.
  2. Calculation of protein concentration in unknown samples
    Protein concentrations is determined from standard curve with the formula Y = mX + c (Figures 4A and 4B).

    Figure 4. Calculation of protein concentration. A. Standard curve of BSA; B. Equation used for the calculation of protein concentration in an unknown sample.

  3. Calculation of GSH and GSSG in unknown samples
    Concentrations of GSH and GSSG from samples is calculated from their respective standard curve with the formula Y = mX + c (Figures 5A and 5B). This assay can detect GSH from 10 ng to 2 µg and GSSG from 5 ng to 2 µg.

    Figure 5. Calculation of GSH and GSSG concentration. Standard curve of (A) GSH; (B) GSSG and (C) Equation used for the calculation of GSH/GSSG concentration in an unknown sample.

  4. Normalization
    GSH and GSSG concentrations divided by the protein quantity used in reaction (10 µg protein per sample). Data are represented in terms of µmole/mg protein.


  1. 0.1 M potassium phosphate EDTA buffer (KPE buffer)
    Note: KPE buffer is prepared of two different solutions, A and B.
    Solution A: dissolving 0.68 g KH2PO4 in 50 ml dH2O
    Solution B: dissolving 0.85 g K2HPO4 or 1.14 g K2HPO4·3H2O in 50 ml dH2O
    Both the solution A and B can be stored at 4 °C if not using immediately. Just before use 0.1 M KPE buffer is prepared by mixing 8 ml of solution A with 42 ml of solution B and the pH adjusted to 8. Finally 0.16 g of EDTA disodium salt is added to the potassium phosphate buffer and mix well to prepare potassium phosphate EDTA buffer
  2. 50% trichloroacetic acid (10 ml)
    5 g trichloroacetic acid weighed and immediately mixed with dH2O
    Adjust the volume to 10ml with dH2O
  3. o-Phthaldehyde solution (10 mg/ml)
    o-Phthaldehyde solution is prepared by mixing 10 mg orthophthaldehyde with 1 ml methanol
    The solution can be stored at 4 °C in dark up to 1 week
  4. 0.4 M N-ethylmaleimide
    50 mg N-ethylmaleimide is dissolved in 1 ml 100% ethanol to make 0.4 M NEM solution. It can be stored at 4 °C up to 1 week
  5. 0.1 N sodium hydroxide
    0.04 g sodium hydroxide pellet is dissolved in 10 ml dH2O to get 0.1 N solution


This work has been supported by CSIR-12th 5 year network project, Integrated NextGen Approaches in Health, Disease and Environmental Toxicity (INDEPTH-BSC001); V.S. has been supported by CSIR Senior Research Fellowship. R.G. and M.P. P. have been supported by UGC-Senior Research Fellowship. The authors declare no competing financial interest. The CSIR-IITR manuscript number is 3440. This protocol has been followed and modified from paper entitled “A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74(1): 214-226”.


  1. Cohn, V. H and Lyle, J. (1966). A fluorometric assay for glutathione. Anal Biochem 14(3): 434-40.
  2. Hissin, P. J. and Hilf, R. (1976). A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 74(1): 214-26.
  3. Rahman, I., Kode, A. and Biswas, S. K. (2006). Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1(6): 3159-65.
  4. Singh, V., Gera, R., Kushwaha, R., Sharma, A. K., Patnaik, S. and Ghosh, D. (2016). Hijacking microglial glutathione by inorganic arsenic impels bystander death of immature neurons through extracellular cystine/glutamate imbalance. Sci Rep 6: 30601.
Copyright: © 2017 The Authors; exclusive licensee Bio-protocol LLC.
How to cite: Singh, V., Gera, R., Purohit, M. P., Patnaik, S. and Ghosh, D. (2017). Fluorometric Estimation of Glutathione in Cultured Microglial Cell Lysate. Bio-protocol 7(11): e2304. DOI: 10.21769/BioProtoc.2304.

Please login to post your questions/comments. Your questions will be directed to the authors of the protocol. The authors will be requested to answer your questions at their earliest convenience. Once your questions are answered, you will be informed using the email address that you register with bio-protocol.
You are highly recommended to post your data including images for the troubleshooting.

You are highly recommended to post your data including images for the troubleshooting.

Marilena Kaperoni
Marilena Kaperoni
I would also like to ask you if you add OPT in your blank samples! I noticed that in the protocol of HIlf and Hissin for gssg/gsh in tissue homogenates they don’t use OPT in blank samples they just add MeOH , which is the solvent of OPT. Are you doing the same in your blanks ?
6/20/2019 12:38:08 AM Reply
Vikas Singh
Immunotoxicology Laboratory, Food Drug and Chemical Toxicology Group and Nanotherapeutics & Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31-Vishvigyan Bhawan, India

In our protocol we have used OPT solution in blank without cell lysate.

6/21/2019 4:24:49 AM

Marilena Kaperoni
Marilena Kaperoni
Hello, while reading the protocol i noticed that in the recipes you provide the way to create OPT at a concentration of 10mg/ml while in the procedure you use OPT at a concetration 0f 1mg/ml. Which one is the one that you actually use in the experiment ?
Also, in the recipes you provide the way you make NEM at a concetration of 0.4M while in the process you refer a concetration of 4M and 40mM .
Which one is the one that you actually use in the experiment ?
6/2/2019 4:53:24 AM Reply

Dear Marilena,
For the first query, we prepared a stock solution of 10mg/ml OPT and added in such a way that final concentration of OPT in reaction mixture becomes 1 mg/ml.

For the second query, I apologize for error in recipe section. We prepared a stock solution of 4 M n-ethyl maleimide (NEM) instead of 0.4 M and finally added NEM with sample from 4 M stock in such a way that final concentration of NEM is 0.04 M.

6/9/2019 11:18:40 PM

We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.