Artificial Optogenetic TRN Stimulation of C. elegans   

Reviewed by
Anonymous reviewer
Download PDF How to cite Favorites Q&A Share your feedback Cited by

In this protocol

Ask a question to the author

Original research article

A brief version of this protocol appeared in:
PLOS Biology
Jan 2016


Optogenetics is a powerful tool for manipulating neuronal activity with high temporal and spatial precision. In the nematode C. elegans optogentics is especially useful and easy to apply. This is because C. elegans is translucent, so its neurons are highly accessible to optic stimulation. In addition, many of its neurons can be exclusively targeted using cell-specific promoters. We have recently taken advantage of optogenetics to deliver artificial patterns of prolonged activation to a class of mechanosensory neurons, called touch receptor neurons (TRNs) in worms that lack touch sensation due to a genetic mutation. Our aim was to examine whether we can counteract the effects of sensory loss by artificially activating the sensory neurons. Here we describe in detail the various components of the protocol that we used. This consists of exposing worms expressing the light-sensitive ion channel Channelrohdopsin 2 (ChR2) in TRNs to long-term random flashes of light.

Keywords: Optogenetics, C. elegans, Mechanosensation, Locomotion, Cross-modal plasticity


Artificial optogenetic stimulation (or silencing) of neurons has become of broad use in neuroscientific research. The powerful model organism, C. elegans, is particularly amenable to optogenetic manipulation (Nagel et al., 2005), and multiple groups have developed a range of techniques for delivering artificial brief patterns of stimulation with high temporal and spatial precision (Leifer et al., 2011; Stirman et al., 2011) and in combination with behavioral (Kocabas et al., 2012) and calcium imaging (Guo et al., 2009) or electrophysiological (Lindsay et al., 2011) readouts. We were interested in establishing a long-term stimulation protocol that would substitute natural ongoing activity in mechanosensory neurons deprived of sensory input (Rabinowitch et al., 2016). Our protocol integrates previous C. elegans optogenetic protocols, but focuses on chronic rather than transient stimulation.

Copyright: © 2016 The Authors; exclusive licensee Bio-protocol LLC.
How to cite: Rabinowitch, I., Treinin, M. and Bai, J. (2016). Artificial Optogenetic TRN Stimulation of C. elegans. Bio-protocol 6(20): e1966. DOI: 10.21769/BioProtoc.1966.

Please login to post your questions/comments. Your questions will be directed to the authors of the protocol. The authors will be requested to answer your questions at their earliest convenience. Once your questions are answered, you will be informed using the email address that you register with bio-protocol.
You are highly recommended to post your data including images for the troubleshooting.

You are highly recommended to post your data (images or even videos) for the troubleshooting. For uploading videos, you may need a Google account because Bio-protocol uses YouTube to host videos.