Hydroponic Culture of ‘Micro-Tom’ Tomato
水培法培养‘Micro-Tom’ 番茄   

引用 收藏 2 提问与回复 分享您的反馈 Cited by



Sep 2015



We use ‘Micro-Tom’ to study tomato fruit ripening and development mechanisms. ‘Micro-Tom’ is suitable for cultivation and experiments due to its small size of 10 to 20 cm in height and short life cycle of 3 months. There is also an abundance of publically available information on ‘Micro-Tom’ including EST, full-length cDNA clones and transcriptome data. ‘Micro-Tom’ plants are grown in hydroponic culture under fluorescents using Arabidopsis cultural shelves in greenhouses or plant rooms to get data with reproducibility for transcriptome and proteome analyses.

Keywords: Tomato (番茄), Micro-Tom (麦克汤姆), Hydroponic culture (水培)

Materials and Reagents

  1. ‘Micro-Tom’ (Prof. Ezura and Prof. Mizoguchi of Tsukuba University, Solanum lycopersicum cv. ‘Micro-Tom’, a model plant in the Solanaceae family). ‘Micro-Tom’ is a dwarf phenotype cultivar, originally first reported of in 1989, fixed by crossbreeding Florida Basket and Ohio 4013-3 (12th filial generation) (Martí et al., 2006) (Figure 1)

    Figure 1. Solanum lycopersicum cv. ‘Micro-Tom’

  2. Nutrient solution [Ootsuka house 5 (OAT house 5) OATagurio Co. Ltd. 2776 (http://www.oat-agrio.co.jp/en/product/index.html)
  3. MS (Murashige and Skoog) mineral salts (Wako Pure Chemical Industries, Siyaku, catalog number: 392-00991 )
  4. Gamborg’s B-5 vitamin (Sigma-Aldrich, catalog number: G1019 )
  5. Sucrose (Wako Pure Chemical Industries, Siyaku, catalog number: 193-00025 )
  6. Agar (Bacto agar) (BD, catalog number: 214010 )
  7. Nutrient solution (see Recipes)
  8. MS (Murashige and Skoog) medium (Li, 2011) (see Recipes)


  1. Rock wool (a kind of mineral wool) (A0 25/40, 25 x 25 x 40 mm) (Nitoubou Co. Ltd. catalog number: 762-090 )
  2. Blower (Air pump, 100 V, working pressure 0.012 MPa) (YASUNAGA CORPORATION, model: LP-30A ) (Figure 2 A)
  3. Three-way tube (metal 6 mm caliber) (Nissei Sangyo Corporation, catalog number: 25424 ) (Figure 2B and 2C)
  4. 6 mm silicon tube (bore diameter 4 mm) (Figure 2B)
  5. Air stone (17 x 17 x 60 mm) (Figure 2D)

    Figure 2. Parts of hydroponic culture system. A. Blower, B. 6 mm silicon tube, C. Three-way tube, D. Air stone (17 x 17 x 60 mm).

  6. Shallow container (Size accordingly to match the scale of your project. In this case we are using a container 10 cm deep, a good example is Tupperware. We should use light-proof type of containers, because they protect to occur algae.)
  7. Perforated polystyrene foam board (2.5 cm thickness, 3.5 cm hole diameter, distance between holes is approximately 12 cm) (Figure 3)

    Figure 3. Perforated Polystyrene Foam Board (2.5 cm thickness, 3.5 cm hole diameter)

  8. Plant boxes (DUCHEFA Biochemie, Steri Vent Low container, catalog number: S1682.0048 and Standard Closure lids, catalog number: S1681.0032 )
  9. Sponge (household daily-use type)


  1. In greenhouse (Figure 4A-B)

    Figure 4. Growing ‘Micro-Tom’ plants using hydroponic culture. A. From seed germination to moving seedlings into hydroponic culture; B. From flowering to ripening.

    1. Soak seeds in distilled water overnight in a shallow container to germinate (Figure 4A).
    2. Transfer germinated seeds to rock wool (Figure 4A).
    3. Grow ‘Micro-Tom’ seedlings for approximately 2 weeks (Figure 4A).
    4. Transfer ‘Micro-Tom’ seedlings by removing them with rock wool still attached and placing them into the holes in the polystyrene foam board (Figure 4A).
    5. Add 1/2 formula nutrient solution (diluted to half concentration with water) into the container (filling it to about 2/3), and use the blower to send air bubbles into the root zone of the tomato plants (Figure 5). Flowers bloom at approximately 45 days after sowing, and fruits begin to grow larger at approximately 53 days after sowing. Ripening begins at approximately 70 days after sowing (Figure 4B).
      Note: By using the three-way tube, you can send air bubbles from 1 blower into multiple containers for increased efficiency. It is worth mentioning that improper air bubble supply to root zones will usually result in poor plant growth and ultimately rot symptoms. Hydroponic culture does not rot as it is constantly receiving air supply, but needs to be changed about once every 7 days (with a new nutrient solution). Polystyrene foam board that is smaller than the container may leave hydroponic culture exposed to light, which can lead to algae growth. As plant growth continues hydroponic culture will slowly be consumed, which can leave a thin air space between the polystyrene foam board and the culture, leading to problems with growth. The foam board needs to be the same size and fit well into the container, preferably with sponge/rock wool being soaked in culture.

      Figure 5. Hydroponic culture system

      Figure 6. ‘Micro-tom’ plants are grown in hydroponic culture (16 h light/8 h dark at 26 °C)

  2. In a plant room
    In addition to growth in greenhouse conditions, we also developed a protocol for hydroponic growth in a plant room (6 h light/8 h dark at 26 °C).
    1. Sow sterilized seeds and grow ‘Micro-Tom’ plants in plant boxes (MS medium containing 2% sucrose) for 3 weeks (Figure 7) (Li, 2011).
    2. Extract 3-week-plants from the boxes so as not to hurt their roots (Figure 7).
    3. Gently wind sponge around the stems of extracted seedlings (Figure 7).

      Figure 7. 3-week-plants grown in MS medium are ready to be transferred into hydroponic culture. Sponges are wound stems of seedlings and placed into holes of polystyrene foam board.

    4. Transfer seedlings with sponge attached into the holes of polystyrene foam board (Figure 5).
    5. Send air bubbles to hydroponic culture using a blower in the same protocol as above (in greenhouse). Roots grow within the hydroponic culture after 2 to 3 weeks (Figure 8).

      Figure 8. Roots of ‘Micro-Tom’ in hydroponic culture after 2~3 weeks

      Note: Plant density per container is an important consideration, as higher density can lead to increased mildew and other problems. For a container of about 30 x 50 cm size, consider growing 15 plants or less to avoid diseases and other issues (Figures 5-6).


  1. Nutrient solution
    KNO3 808 mg/L
    MgSO4.7H2O 492 mg/L
    Ca(NO3).4H2O 944 mg/L
    NH4H2PO4 152 mg/L
    Microelement 50 mg/L
    Mn 0.77 ppm
    B 0.32 ppm
    Fe 2.85 ppm
    Cu 0.020 ppm
    Zn 0.040 ppm
    Mo 0.020 ppm
  2. Murashige and Skoog (MS) medium
    1. Murashige and Skoog (MS) mineral salts
    2. Gamborg’s B-5 vitamin
    3. 2% sucrose
    4. 0.8% agar (Bacto agar)
    5. Adjust pH to 5.7 with KOH


This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (Japan) [Grants-in-Aid for Scientific Research (Nos. 20510190 and 23580039 to R M)].


  1. Aoki, K., Yano, K., Suzuki, A., Kawamura, S., Sakurai, N., Suda, K., Kurabayashi, A., Suzuki, T., Tsugane, T., Watanabe, M., Ooga, K., Torii, M., Narita, T., Shin, I. T., Kohara, Y., Yamamoto, N., Takahashi, H., Watanabe, Y., Egusa, M., Kodama, M., Ichinose, Y., Kikuchi, M., Fukushima, S., Okabe, A., Arie, T., Sato, Y., Yazawa, K., Satoh, S., Omura, T., Ezura, H. and Shibata, D. (2010). Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics. BMC Genomics 11: 210.
  2. Li, X. (2011). Arabidopsis growing protocol-a general guide. Bio-protocol Bio101: e126.
  3. Marti, E., Gisbert, C., Bishop, G. J., Dixon, M. S. and Garcia-Martinez, J. L. (2006). Genetic and physiological characterization of tomato cv. Micro-Tom. J Exp Bot 57(9): 2037-2047.
  4. Suzuki, M., Takahashi, S., Kondo, T., Dohra, H., Ito, Y., Kiriiwa, Y., Hayashi, M., Kamiya, S., Kato, M., Fujiwara, M., Fukao, Y., Kobayashi, M., Nagata, N. and Motohashi, R. (2015). Plastid proteomic analysis in tomato fruit development. PLoS One 10(9): e0137266.


我们使用"微汤姆"来研究番茄果实成熟和发育机制。 "微汤姆"适合于培养和实验,由于其小尺寸10至20厘米的高度和短的生命周期3个月。 还有大量关于"Micro-Tom"的公开信息,包括EST,全长cDNA克隆和转录组数据。 "Micro-Tom"植物在水培培养基中在荧光下使用在温室或植物室中的拟南芥文化架来生长,以获得具有转录组和蛋白质组分析的可重复性的数据。

关键字:番茄, 麦克汤姆, 水培


  1. 'Micro-Tom'(筑波大学的Ezura教授和Mizoguchi教授,<茄科> cv。'Micro-Tom',在茄科家族中的模型植物)。 'Micro-Tom'是矮矮表型栽培种,最初首次报道于1989年,通过杂交佛罗里达篮和俄亥俄4013-3(第12代)固定(Martí等人,2006) 1)。

    图1.茄属cv。 'Micro-Tom'

  2. 营养液[Ootsuka house 5(OAT house 5)OATagurio Co.Ltd。2776( http://www.oat-agrio.co.jp/en/product/index.html
  3. MS(Murashige和Skoog)矿物盐(Wako Pure Chemical Industries,Siyaku,目录号:392-00991)
  4. Gamborg's B-5维生素(Sigma-Aldrich,目录号:G1019)
  5. 蔗糖(Wako Pure Chemical Industries,Siyaku,目录号:193-00025)
  6. 琼脂(Bacto琼脂)(BD,目录号:214010)
  7. 营养液(见配方)
  8. MS(Murashige和Skoog)培养基(Li,2011)(参见配方)


  1. 岩棉(一种矿棉)(A0 25/40,25×25×40mm)(Nitoubou Co.Ltd。目录号:762-090)
  2. 鼓风机(空气泵,100V,工作压力0.012MPa)(YASUNAGA CORPORATION,型号:LP-30A(图2A)
  3. 三通管(金属6mm口径)(Nissei Sangyo Corporation,目录号:25424)(图2B和2C)
  4. 6mm硅管(孔径4mm)(图2B)
  5. 气石(17 x 17 x 60毫米)(图2D)

    图2.水耕培养系统的部件A. 鼓风机,B。6 mm硅管,C.三通管,D.气石(17 x 17 x 60 mm)

  6. 浅容器(根据您的项目规模大小。在这种情况下,我们使用一个10厘米深的容器,一个很好的例子是Tupperware。我们应该使用防光型容器,因为它们保护藻类。)
  7. 穿孔的聚苯乙烯泡沫板(2.5cm厚,3.5cm孔直径,孔之间的距离为约12cm)(图3)


  8. 植物盒(DUCHEFA Biochemie,Steri Vent Low容器,目录号:S1682.0048和Standard Closure lids,目录号:S1681.0032)
  9. 海绵(日常使用型)


  1. 在温室(图4A-B)中

    图4.使用水培培养生长'Micro-Tom'植物。A.从种子发芽到移栽幼苗进入水耕培养; B.从开花到成熟。

    1. 将种子浸泡在浅水容器中的蒸馏水中过夜以发芽(图4A)
    2. 将发芽的种子转移到岩棉(图4A)
    3. 生长"微汤姆"幼苗约2周(图4A)
    4. 转移"微汤姆"幼苗,通过用岩棉除去它们 ?并将它们放入聚苯乙烯泡沫板中的孔中 (图4A)。
    5. 加入1/2公式营养液(稀释至一半 用水浓缩)到容器中(将其填充到约2/3) 并使用鼓风机将气泡送入番茄根部区 植物(图5)。花在播种后约45天开花, 并且在播种后约53天果实开始生长更大。 成熟开始于播种后约70天(图4B) 注意:通过使用三通管,您可以从1发送气泡 鼓风机进入多个容器以提高效率。值得的 提到根区通常不适当的气泡供应 导致植物生长不良和最终腐烂症状。水耕 文化不腐烂,因为它不断接受空气供应,但需要 ?改变约一次非常7天(与新的营养液)。 比容器小的聚苯乙烯泡沫板可能离开 水培培养物暴露于光,这可以导致藻类生长。如 植物生长继续水栽培会慢慢消耗,这 ?可以在聚苯乙烯泡沫板和聚苯乙烯泡沫板之间留下薄的空气空间 文化,导致生长的问题。泡沫板需要 ?相同尺寸并且很好地适合容器,优选地具有海绵/岩石 羊毛被浸泡在文化中。



  2. 在植物屋
    1. 播种灭菌的种子并在植物盒中生长'Micro-Tom'植物(MS 含有2%蔗糖的培养基)中培养3周(图7)(Li,2011)
    2. 从箱子中提取3周植物,以免伤害他们的根(图7)
    3. 在提取的幼苗的茎上轻轻地缠绕海绵(图7)

      图7.在MS培养基中生长的3周植物准备转移 海绵是幼苗的根茎并放置 ?进入聚苯乙烯泡沫板的孔中
    4. 将带有海绵的幼苗转移到聚苯乙烯泡沫板的孔中(图5)
    5. 使用吹风机在同一个发送气泡水耕文化 方案(在温室中)。根生长在水培中 2至3周后培养(图8)

      图8. 2?3周后,'Micro-Tom'在水培培养基中的根部

      注:每个容器的植物密度是一个重要的考虑因素 较高的密度可导致增加霉变等问题。为一个 容器约30×50厘米大小,考虑生长15植物或更少 以避免疾病和其他问题(图5-6)。


  1. 营养液
    KNO 3 808 mg/L
    MgSO 4 7H 2 O 492mg/L
    Ca(NO 3)/sup> 4H 2 O 944mg/L
    NH 4 H H 2 PO 4 152mg/L
    微量元素50 mg/L
    Mn 0.77ppm
    B 0.32ppm
    Fe 2.85 ppm
    Cu 0.020ppm
    Zn 0.040ppm
    Mo 0.020ppm
  2. Murashige和Skoog(MS)培养基
    1. Murashige和Skoog(MS)矿物盐
    2. Gamborg的B-5维生素
    3. 2%蔗糖
    4. 0.8%琼脂(Bacto琼脂)
    5. 用KOH调节pH至5.7


这项工作得到教育,文化,体育,科学技术部(日本)[科学研究助理(No. 20510190和23580039至R M)]的支持。


  1. Aoki,K.,Yano,K.,Suzuki,A.,Kawamura,S.,Sakurai,N.,Suda,K.,Kurabayashi,A.,Suzuki,T.,Tsugane,T.,Watanabe, Ooga,K.,Torii,M.,Narita,T.,Shin,IT,Kohara,Y.,Yamamoto,N.,Takahashi,H.,Watanabe,Y.,Egusa,M.,Kodama,M.,Ichinose ,Y.,Kikuchi,M.,Fukushima,S.,Okabe,A.,Arie,T.,Sato,Y.,Yazawa,K.,Satoh,S.,Omura,T.,Ezura,H.and Shibata ,D。(2010)。 对来自番茄的全长cDNA的大规模分析( Solanum lycopersicum )栽培品种Micro-Tom是茄科基因组学的参考系统。 BMC Genomics 11:210.
  2. Li,X。(2011)。 拟南芥生长方案 - 一般指南 生物协议 Bio101:e126。
  3. Marti,E.,Gisbert,C.,Bishop,G.J.,Dixon,M.S.and Garcia-Martinez,J.L。(2006)。 番茄cv的遗传和生理表征。 Micro-Tom。 J Exp Bot 57(9):2037-2047。
  4. Suzuki,M.,Takahashi,S.,Kondo,T.,Dohra,H.,Ito,Y.,Kiriiwa,Y.,Hayashi,M.,Kamiya,S.,Kato,M.,Fujiwara, Fukao,Y.,Kobayashi,M.,Nagata,N.and Motohashi,R。(2015)。 番茄果实发育中的质体蛋白质组学分析 PLoS One 10(9):e0137266。
  • English
  • 中文翻译
免责声明 × 为了向广大用户提供经翻译的内容,www.bio-protocol.org 采用人工翻译与计算机翻译结合的技术翻译了本文章。基于计算机的翻译质量再高,也不及 100% 的人工翻译的质量。为此,我们始终建议用户参考原始英文版本。 Bio-protocol., LLC对翻译版本的准确性不承担任何责任。
Copyright: © 2015 The Authors; exclusive licensee Bio-protocol LLC.
引用: Readers should cite both the Bio-protocol article and the original research article where this protocol was used:
  1. Motohashi, R., Enoki, H., Fukazawa, C. and Kiriiwa, Y. (2015). Hydroponic Culture of ‘Micro-Tom’ Tomato. Bio-protocol 5(19): e1613. DOI: 10.21769/BioProtoc.1613.
  2. Suzuki, M., Takahashi, S., Kondo, T., Dohra, H., Ito, Y., Kiriiwa, Y., Hayashi, M., Kamiya, S., Kato, M., Fujiwara, M., Fukao, Y., Kobayashi, M., Nagata, N. and Motohashi, R. (2015). Plastid proteomic analysis in tomato fruit development. PLoS One 10(9): e0137266.



laura barsanti
CNR Istituto di Biofisica
Thanks a lot for your prompt reply! :)
one more thing:
when I click on the link http://www.oat-agrio.co.jp/en/product/index.html, I cannot find Ootsuka hause 5
3/15/2018 6:42:40 AM Reply
laura barsanti
CNR Istituto di Biofisica
Please, tell me the meaning of "Microelement 50 mg/L" means, since you then give microelements ppm amounts
3/15/2018 3:26:59 AM Reply
Reiko Motohashi
Agriculture Department, Shizuoka University, Japan

Microelement is Ootsuka hause 5 (Japanese company OAT Agurio) that is powder including Mn 0.77 ppm, B 0.32 ppm, Fe 2.85 ppm, Cu 0.020 ppm, Zn 0.040 ppm, Mo 0.020 ppm.

3/15/2018 3:53:20 AM