Protocols in Current Issue
Protocols in Past Issues
0 Q&A 5164 Views Sep 5, 2018
There is a pressing need to develop sustainable and efficient methods to protect and stabilize iron objects. To develop a conservation-restoration method for corroded iron objects, this bio-protocol presents the steps to investigate reductive dissolution of ferric iron and biogenic production of stabilizing ferrous iron minerals in the strict anaerobe Desulfitobacterium hafniense (strains TCE1 and LBE). We investigated iron reduction using three different Fe(III) sources: Fe(III)-citrate (a soluble phase), akaganeite (solid iron phase), and corroded coupons. This protocol describes a method that combines spectrophotometric quantification of the complex Fe(II)-Ferrozine® with mineral characterization by scanning electron microscopy and Raman spectroscopy. These three methods allow assessing reductive dissolution of ferric iron and biogenic mineral production as a promising alternative for the development of an innovative sustainable method for the stabilization of corroded iron.
0 Q&A 8069 Views Sep 5, 2016
Iron in blood plasma is bound to its transport protein transferrin, which delivers iron to most tissues. In iron overload and certain pathological conditions, the carrying capacity of transferrin can become exceeded, giving rise to non-transferrin-bound iron, which is taken up preferentially by the liver, kidney, pancreas, and heart. The measurement of tissue transferrin- and non-transferrin-bound iron (TBI and NTBI, respectively) uptake in vivo can be achieved via intravenous administration of 59Fe-labeled TBI or NTBI followed by gamma counting of various organs. Here we describe a detailed protocol for the measurement of TBI and NTBI uptake by mouse tissues.

We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.