Immunology


Protocols in Current Issue
Protocols in Past Issues
0 Q&A 257 Views Feb 5, 2023

Macrophages are at the center of innate immunity and are the main target cells of the intracellular pathogen Salmonella enterica serovar Typhi. The production of reactive oxygen and nitrogen species (ROS/RNS) is the host’s early response to invading microbes, as oxidative stress is highly toxic for bacteria. Adequate ROS/RNS production in infected macrophages is critical for the clearance of intracellular pathogens; this is achieved by several enzymes, including inducible NADPH phagocyte oxidase (NOX) and nitric oxide synthase (iNOS), respectively. The pro-inflammatory cytokine interferon gamma (IFNγ), primarily produced by activated natural killer cells and T-helper cells type 1, is a potent inducer of iNOS. Therefore, it is crucial for infection control through oxidative microbicidal activity.


To characterize the early oxidative stress response via ROS formation, which is critical for the reduction of Salmonella proliferation within macrophages, we established an in vitro model of murine macrophages infected with Salmonella enterica serovar Typhimurium (S.tm). This serovar induces a systemic infection in mice that is frequently used as a model for typhoid fever, which, in human subjects, is caused by Salmonella Typhi.


We generated bone marrow–derived macrophages (BMDM) from C57BL/6N wildtype mice using macrophage colony-stimulating factor (M-CSF) stimulation for six days. Thereafter, we infected BMDM with S.tm for one hour. Shortly before infection, cells were stained with CellROXTM Deep Red reagent. In its reduced form, CellROXTM is non-fluorescent. As a result of oxidation by ROS, this reagent exhibits strong fluorescence and persists within the cells. Subsequently, changes as a result of the oxidative stress response can be measured with a TECAN Spark microplate reader over time.


We designed this protocol to measure oxidative stress in macrophages through the course of an infection with an intracellular bacterium. The protocol has several advantages over established techniques. First, it allows to continuously monitor and quantify ROS production in living cells from the very start of the infection to the final clearance of the intracellular pathogen. Second, this protocol enables efficient ROS detection without stressing the cells by detaching or staining procedures.


Graphical abstract


0 Q&A 1819 Views Mar 20, 2022

As a model to interrogate human macrophage biology, macrophages differentiated from human induced pluripotent stem cells (hiPSCs) transcend other existing models by circumventing the variability seen in human monocyte-derived macrophages, whilst epitomizing macrophage phenotypic and functional characteristics over those offered by macrophage-like cell lines (Mukherjee et al., 2018). Furthermore, hiPSCs are amenable to genetic manipulation, unlike human monocyte-derived macrophages (MDMs) (van Wilgenburg et al., 2013; Lopez-Yrigoyen et al., 2020), proposing boundless opportunities for specific disease modelling.


We outline an effective and efficient protocol that delivers a continual production of hiPSC-derived-macrophages (iMACs), exhibiting human macrophage surface and intracellular markers, together with functional activity.


The protocol describes the resuscitation, culture, and differentiation of hiPSC into mature terminal macrophages, via the initial and intermediate steps of expansion of hiPSCs, formation into embryoid bodies (EBs), and generation of hematopoietic myeloid precursors.


We offer a simplified, scalable, and adaptable technique that advances upon other protocols, utilizing feeder-free conditions and reduced growth factors, to produce high yields of consistent iMACs over a period of several months, economically.

0 Q&A 2517 Views Sep 5, 2021

An inflammasome is an intracellular multiprotein complex that plays important roles in host defense and inflammatory responses. Inflammasomes are typically composed of the adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC), cytoplasmic sensor protein, and the effector protein pro-caspase-1. ASC assembly into a protein complex termed ASC speck is a readout for inflammasome activation. Here, we provide a step-by-step protocol for the detection of ASC speck by confocal microscopy in Bone marrow derived macrophages (BMBDs) triggered by chemical stimuli and bacterial pathogens. We also describe the detailed procedure for the generation of BMDMs, stimulating conditions for inflammasome activation, immunofluorescence cell staining of ASC protein, and microscopic examination. Thus far, this method is a simple and reliable manner to visualize and quantify the intracellular localization of ASC speck.


Graphic abstract:



Figure 1. Confocal microscopy detection of ASC speck formation in untreated WT BMDMs and WT BMDMs stimulated with LPS and ATP, transfected with dsDNA, and infected with F. novicida or Salmonella as indicated. Arrow indicates the ASC speck. Scale bars: 10 μm.


0 Q&A 2364 Views Jun 20, 2021

Over the last decade, lipids have emerged as possessing an ever-increasing number of key functions, especially in membrane trafficking. For instance, phosphatidic acid (PA) has been proposed to play a critical role in different steps along the secretory pathway or during phagocytosis. To further investigate in detail the precise nature of PA activities, we need to identify the organelles in which PA is synthesized and the PA subspecies involved in these biological functions. Indeed, PA, like all phospholipids, has a large variety based on its fatty acid composition. The recent development of PA sensors has helped us to follow intracellular PA dynamics but has failed to provide information on individual PA species. Here, we describe a method for the subcellular fractionation of RAW264.7 macrophages that allows us to obtain membrane fractions enriched in specific organelles based on their density. Lipids from these membrane fractions are precipitated and subsequently processed by advanced mass spectrometry-based lipidomics analysis to measure the levels of different PA species based on their fatty acyl chain composition. This approach revealed the presence of up to 50 different species of PA in cellular membranes, opening up the possibility that a single class of phospholipid could play multiple functions in any given organelle. This protocol can be adapted or modified and used for the evaluation of other intracellular membrane compartments or cell types of interest.

0 Q&A 4190 Views Mar 20, 2021

The ability to conduct in vivo macrophage-specific depletion remains an effective means to uncover functions of macrophages in a wide range of physiological contexts. Compared to the murine model, zebrafish offer superior imaging capabilities due to their optical transparency starting from a single-cell stage to throughout larval development. These qualities become important for in vivo cell specific depletions so that the elimination of the targeted cells can be tracked and validated in real time through microscopy. Multiple methods to deplete macrophages in zebrafish are available, including genetic (such as an irf8 knockout), chemogenetic (such as the nitroreductase/metronidazole system), and toxin-based depletions (such as using clodronate liposomes). The use of clodronate-containing liposomes to induce macrophage apoptosis after phagocytosing the liposomes is effective in depleting macrophages as well as testing their ability to phagocytose. Here we describe a detailed protocol for the systemic depletion of macrophages in zebrafish larvae by intravenous injection of liposomal clodronate supplemented with fluorescent dextran conjugates. Co-injection with the fluorescent dextran allows tracking of macrophage depletion in real time starting with verifying the successful intravenous injection to macrophage uptake of molecules and their eventual death. To verify a high degree of macrophage depletion, the level of brain macrophage (microglia) elimination can be determined by a rapid neutral red vital dye staining when clodronate injection is performed at early larval stages.


Graphical abstract:



Experimental workflow for in vivo macrophage-specific depletion by liposomal clodronate in larval zebrafish


0 Q&A 3346 Views Jul 5, 2020
Glomerulonephritis (GN) is a common pathological condition in chronic kidney diseases that often leads to end stage renal failure. Mac-1 (CD11b/CD18)-mediated neutrophil, macrophage, and dendritic cell glomerular infiltration leading to cellular dysfunction and destruction is an important disease mechanism. The cellular distribution and dynamics of the expression of Mac-1 ligands ICAM-1 and ICAM-2 in GN have not been well studied because of the difficulties in tissue staining and colocalizing glomerular cells with surface antigens. To improve the visualization of cell surface marker and antigen expression in kidney compartments, we have devised an even but mild fixation procedure employing p-formaldehyde-lysine-periodate (PLP) perfusion. A large panel of antibodies (Ab) against cell surface markers was used to identify kidney cell types and adhesion molecules. When confocal microscopy was used in visualizing glomerular adhesion molecule staining, the endothelial cells were found to specifically express CD31, and these cells express ICAM-2 constitutively. Though ICAM-1 was not expressed by glomerular endothelial cells in homeostasis, it was highly upregulated in mice with chronic GN and severe proteinuria. VCAM-1, a ligand for VLA-4 important in leukocyte migration, was not expressed in the glomerulus. The results highlight the importance of ICAM-1 in the infiltration of macrophages and dendritic cells in cGN. This report will provide a widely applicable procedure for yielding high quality confocal images and for the identification and quantitation of receptors and other cellular antigens expressed in different kidney compartments and cell types.
0 Q&A 4449 Views Jun 5, 2020
Methods to test both the functionality and mechanism of action for human recombinant proteins and antibodies in vitro have been limited by multiple factors. To test the functionality of a recombinant protein or antibody, the receptor, the receptor-associated ligand, or both must be expressed by the cells present within the in vitro culture. While the use of transfected cell lines can circumvent this gap, the use of transfected cell lines does not allow for studying the native signaling pathway(s) modulated by the specific recombinant protein or antibody in primary cells. The present protocol utilizes sort purified CD14+ monocytes and T cells, both CD4+ T cells and CD8+ T cells, from healthy donors in a co-culture system. This methodology is particularly relevant for testing recombinant proteins or antibodies that are putative therapeutics for the treatment of autoimmune disease and cancer. While the current protocol focuses on co-cultures containing B7-H4 expressing monocytes plus either autologous CD4+ T cells or CD8+ T cells, the protocol can be modified for the user’s specific needs.
0 Q&A 4327 Views Mar 20, 2020
Tissue-resident macrophages are pivotal for a tightly-regulated iron metabolism at a cellular and systemic level, since subtle iron alterations increase the susceptibility for microbial infections or drive multiple diseases. However, research on cellular iron homeostasis in macrophages remains challenging due to the limited amount of available methods using radioactive 59Fe isotopes or strong iron chelators, which might be inapplicable in certain experimental settings. This protocol describes the analysis of the quenchable iron pool (QIP) in macrophages by loading these cells with exogenous iron-complexes. Thereby, the cytoplasmic iron pool can be determined, since the iron uptake ability of macrophages inversely correlates with intracellular iron levels. Thus, this assay enables the accurate analysis of even minor alterations in cytoplasmic iron fluxes and is applicable in almost every laboratory environment. In addition, the protocol can also be adopted for other immune cell types in vitro and in vivo.
0 Q&A 3378 Views Dec 20, 2019
Chlamydia trachomatis (C.t.) is an obligate intracellular pathogen that cannot be cultured axenically and must be propagated within eukaryotic host cells. There are at least 15 distinct chlamydial serovariants that belong to 2 major biovars commonly referred to as trachoma and lymphogranuloma venereum (LGV). The invasive chlamydia LGV serovar L2 is the most widely used experimental model for studying C.t. biology and infection and is the only strain with reliable genetic tools available. New techniques to genetically manipulate C.t. L2 have provided opportunities to make mutants using TargeTron and allelic exchange as well as strains overexpressing epitope-tagged proteins, in turn necessitating the regular purification of transformant and mutant clones. Purification of C.t. is a labor-intensive exercise and one of the most common reagents classically used in the purification process, Renografin, is no longer commercially available. A similar formulation of diatrizoate meglumine called Gastrografin is readily available and we as well as others have had great success using this in place of Renografin for chlamydial purifications. Here, we provide a detailed general protocol for infection, propagation, purification, and titering of Chlamydia trachomatis serovar L2 with additional notes specifically pertaining to mutants or recombinant DNA carrying clones.
0 Q&A 4830 Views Dec 20, 2019
The process of autophagy is an essential cellular mechanism, required to maintain general cell health through the removal of dysfunctional organelles, such as the ER, peroxisomes and mitochondria, as well as protein aggregates, and bacteria. Autophagy is an extremely dynamic process, and tools are constantly being developed to study the various steps of this process. This protocol details a method to study the end steps of autophagy-lysosomal fusion and the formation of the autolysosome. Many techniques have been used to study the various steps of the autophagy process. Here we describe the RedGreen-assay (RG-assay), an immunofluorescence-based technique used to visualize the targeting of substrates to the autolysosome in live cells. This technique takes advantage of the low lysosomal pH and over-expression of a tandem GFP-mCherry tagged protein targeted to an organelle of interest. While in the neutral cytosol or autophagosome, both GFP and RFP will fluoresce. However, within the autolysosome, the GFP signal is quenched due to the low pH environment and the RFP emission signal will predominate. This technique is readily quantifiable and amenable to high throughput experiments. Additionally, by tagging the GFP-RFP tandem fluorescent protein with organelle specific targeting sequences, it can be used to measure a wide range of substrates of autophagy.



We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.