Biochemistry


Categories

Protocols in Current Issue
Protocols in Past Issues
0 Q&A 455 Views Jul 5, 2023

In vitro translation systems are a useful biochemical tool to research translational regulation. Although the preparation of translation-competent cell extracts from mammals has often been a challenge, the commercially available rabbit reticulocyte lysate (RRL) is an exception. However, its valid use, investigating the mechanism of translation machinery such as ribosomes in RRL, presents an analytic hurdle. To overcome this issue, the hybrid translation system, which is based on the supplementation of purified human ribosomes into ribosome-depleted RRL, has been developed. Here, we describe the step-by-step protocol of this system to study translation driven by ribosomes lacking post-translational modifications of the ribosomal protein. Moreover, we combined this approach with a previously developed reporter mRNA to assess the processivity of translation elongation. This protocol could be used to study the potency of heterologous ribosomes.

0 Q&A 2883 Views May 5, 2022

Mammalian tissues are highly heterogenous and complex, posing a challenge in understanding the molecular mechanisms regulating protein expression within various tissues. Recent studies have shown that translation at the level of the ribosome is highly regulated, and can vary independently of gene expression observed at a transcriptome level, as well as between cell populations, contributing to the diversity of mammalian tissues. Earlier methods that analyzed gene expression at the level of translation, such as polysomal- or ribosomal-profiling, required large amounts of starting material to isolate enough RNA for analysis by microarray or RNA-sequencing. Thus, rare or less abundant cell types within tissues were not able to be properly studied with these methods. Translating ribosome affinity purification (TRAP) utilizes the incorporation of an eGFP-affinity tag on the large ribosome subunit, driven by expression of cell-type specific Cre-lox promoters, to allow for identification and capture of transcripts from actively translating ribosomes in a cell-specific manner. As a result, TRAP offers a unique opportunity to evaluate the entire mRNA translation profile within a specific cell type, and increase our understanding regarding the cellular complexity of mammalian tissues.


Graphical abstract:



Schematic demonstrating TRAP protocol for identifying ribosome-bound transcripts specifically within cerebellar Purkinje cells.


0 Q&A 2827 Views Feb 20, 2022

Ribosome profiling (Ribo-Seq) is a highly sensitive method to quantify ribosome occupancies along individual mRNAs on a genome-wide scale. Hereby, ribosome-protected fragments (= footprints) are generated by nuclease digestion, isolated, and sequenced together with the corresponding randomly fragmented input samples, to determine ribosome densities (RD). For library preparation, equal amounts of total RNA are used. Subsequently, all transcript fragments are subjected to linker ligation, cDNA synthesis, and PCR amplification. Importantly, the number of reads obtained for every transcript in input and footprint samples during sequencing depends on sequencing depth and library size, as well as the relative abundance of the transcript in the sample. However, the information pertaining to the absolute amount of input and footprint sequences is lost during sample preparation, hence ruling out any conclusion whether translation is generally suppressed or activated in one condition over the other. Therefore, the RD fold-changes determined for individual genes do not reflect absolute regulation, but have to be interpreted as relative to bulk mRNA translation. Here, we modified the original ribosome profiling protocol that was first established by Ingolia et al. (2009), by adding small amounts of yeast lysate to the mammalian lysates of interest as a spike-in. This allows us to not only detect changes in the RD of specific transcripts relative to each other, but also to simultaneously measure global differences in RD (normalized ribosome density values) between samples.


Graphic abstract:



Global changes in translation efficiency can be detected with polysome profiling, where the proportion of polysomal ribosomes is interpreted as a proxy for ribosome density (RD) on bulk mRNA. Ribo-Seq measures changes in RD of specific mRNAs relative to bulk mRNA. The addition of a yeast-lysate, as a spike-in for normalization of read counts, allows for an absolute measurement of changes in RD.

0 Q&A 2889 Views Sep 20, 2021

Cell-free translation is a powerful technique for in vitro protein synthesis. While cell-free translation platforms prepared from bacterial, plant, and mammalian cells are commercially available, yeast-based translation systems remain proprietary knowledge of individual labs. Here, we provide a detailed protocol for simple, fast, and cost-effective preparation of the translation-competent cell-free extract (CFE) from budding yeast. Our protocol streamlines steps combined from different procedures published over the last three decades and incorporates cryogenic lysis of yeast cells to produce a high yield of the translationally active material. We also describe techniques for the validation and troubleshooting of the quality and translational activity of the obtained yeast CFE.


Graphic abstract:



The flow of Cell-Free Extract (CFE) preparation procedure.


0 Q&A 2573 Views Sep 20, 2021

Circular RNAs (circRNAs), a special type of RNAs without 5’- and 3’-ends, are widely present in eukaryotes and known to function as noncoding RNAs to regulate gene expression, including as miRNA sponges. Recent studies showed that many exonic circRNAs, generated by back-splicing of pre-mRNAs, can be translated in a cap-independent fashion through IRESs or m6A RNA methylation. However, the scope of the translatable circRNAs and the biological function of their translation products are still unclear in different cells and tissues. Ribosome footprinting and proteomic analysis were usually used to globally identify translatable circRNAs. However, both methods have low sensitivity due to the low efficiency in the discovery of circRNA specific reads or peptides (i.e., the back-splicing junctions are difficult to recover by the short reads of ribosome footprinting and the limitation of proteomic analysis). Here, we described an alternative method to identify translatable circRNAs using polysome profiling and circRNA-seq. Generally, polysome-associated RNAs were separated with sucrose gradients. Then polysome-bound circRNAs were enriched by an RNase R treatment and identified through paired-end deep sequencing. Thus, this method is more sensitive than ribosome footprint and proteomic analyses for the identification of translatable circRNAs.

0 Q&A 4121 Views Aug 5, 2021

Polysome profile analysis is a popular method for separating polysomes and ribosomal subunits and is typically achieved using a sucrose density gradient (SDG). This has remained the gold standard method since ribosomes were first discovered; however, this method is time-consuming and requires multiple steps from making the gradient and long ultracentrifugation to collecting and analyzing the fractions. Each of these steps in the SDG workflow can introduce potential technical variation that affects the reproducibility of gradient profiles between samples. To address these limitations, we have developed a flexible, alternative approach for analyzing polysomes and ribosomal subunits based on size-exclusion chromatography (SEC), termed ‘Ribo Mega-SEC.’ In comparison with the SDG method, Ribo Mega-SEC involves a single step using ultra-high-performance liquid chromatography (uHPLC). The entire workflow, from injecting the lysate to collecting the fractions, can be performed in as little as 15 min, with high reproducibility. By varying the pore size of the SEC column, polysomes and ribosomal subunits can be separated using extracts from either human or mouse cultured cell lines or from tissue samples, Drosophila embryos, or budding yeast. The resulting separated fractions are suitable for analysis using a wide range of subsequent analytical techniques including mass spectrometry (MS)-based proteomics, RNA-Seq, electron microscopy (EM), and multiple biochemical assays.

0 Q&A 1977 Views Jun 20, 2021

Liposomes have been used as a pseudo cell membrane for encapsulating biomolecules and creating an artificial cell in the interior where biochemical reactions can occur. Among the several methods used to prepare biomolecule-encapsulating liposomes, the spontaneous emulsion transfer method is superior to others in that it allows us to readily prepare relatively large liposomes whose sizes are controlled (from micrometer- to millimeter-sized liposomes) without special equipment. However, conventional protocols for this method require liposomes to contain a considerably high concentration of sucrose (high-density solute), which severely inhibits gene expression, one of the most important biochemical reactions. Thus, we optimized the preparation conditions to develop a wheat germ extract (WGE)-based protocol that requires a much lower concentration of sucrose and has almost no effect on eukaryotic cell-free translation. Our protocol allows us to successfully prepare millimeter-sized, moderately stable, WGE-encapsulating liposomes in which WGE translation takes place efficiently. Since a broad range of genes derived from various types of organisms can be efficiently translated in a WGE-based translation system, liposomes prepared using our protocol would be useful as a versatile research tool for artificial cells.

0 Q&A 11616 Views Dec 20, 2014
mRNAs surrounded by polysomes are ready for translation into proteins (Warner et al., 1963); these mRNAs are defined as polysomal-mRNAs (Mustroph et al., 2009). The process is affected by various growth conditions or surrounding situations. Microarray analysis is a powerful tool for detecting genome-wide gene expression. Therefore, using polysomal-mRNAs for microarray analysis can reflect the gene translation information (the translatome) under different developmental stages or environmental conditions from eukaryotes. Polysomal-mRNAs can be collected from the polysomal fraction by sucrose-gradient separation for further quantitative PCR or microarray assay. We modified a protocol (Mustroph et al., 2009) for collecting polysomal-mRNAs via sucrose-gradient separation to eliminate monosomal-mRNA contamination from pLAT52:HF:RPL18 Arabidopsis. This transgenic Arabidopsis uses a pollen-specific promoter (ProLAT52) to generate epitope-tagged polysomal-RNA complexes that could be purified with a specific antigen (Lin et al., 2014). The polysomal-mRNAs we obtained via sucrose-gradient separation and antibody purification underwent in vivo translation in pollen tubes grown from self-pollinated gynoecia of Arabidopsis thaliana.
0 Q&A 10654 Views Mar 20, 2014
The method described here allows measuring the effect of exogenously introduced modifications to in vitro-transcribed mRNA on the translation in cells. Using cells derived from knockout mice and control littermates, this method enables to compare the results in the presence or absence of specific gene products. In our lab, we used this protocol to check whether the exogenous addition of 5’ capping and 2’-O methylation to in vitro-mRNA affects the translational efficiency. Here we describe the details of our experiments.



We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.