0 Q&A
10243 Views
May 20, 2015
Accumulation of metals in plant tissues, and occasionally, different cells of the same tissue, may be highly non-uniform (Seregin and Kozhevnikova, 2008). Easy-to-use histochemical methods may greatly help to investigate the distribution and accumulation of metals within and among plant tissues, and also provide information on their subcellular localization (Seregin and Kozhevnikova, 2011). The histochemical techniques of zinc (Zn) visualization are based on the formation of the blue-colored complex of Zn with the metallochrome indicator Zincon (C20H15N4NaO6S), or the green-fluorescent complex with Zinpyr-1 (C46H36Cl2N6O5) (Seregin et al., 2011; Seregin and Kozhevnikova, 2011). A method for histochemical Zn detection in plant tissues using Zinpyr-1 was first proposed by Sinclair et al. (2007), and later modified by Seregin et al. (2011), and Seregin and Kozhevnikova (2011). Histochemical data supplement the results of quantitative analysis, thus allowing a detailed study of the distribution, accumulation, and translocation pathways of Zn within the plant, which are important topics in modern plant physiology. These histochemical techniques have been successfully applied in different plant species, for example Zea mays (Seregin et al., 2011), Noccaea caerulescens and Thlaspi arvense (Kozhevnikova et al., 2014a), Capsella bursa-pastoris and Lepidium ruderale (Kozhevnikova et al., 2014b), in which Zn was detected in different root and shoot tissues. Here, we present the full staining protocols for these methods, developed or modified in our lab (Seregin and Kozhevnikova, 2011; Kozhevnikova et al., 2014a; Kozhevnikova et al., 2014b).