Molecular Biology


Protocols in Current Issue
Protocols in Past Issues
0 Q&A 644 Views Sep 20, 2023

The identification and characterization of the ubiquitin E-ligase complexes involved in specific proteins’ degradation via the ubiquitin-proteasome system (UPS) can be challenging and require biochemical purification processes and in vitro reconstitution assays. Likewise, evaluating the effect of parallel phosphorylation and ubiquitination events occurring in vivo at dual phospho/ubiquitin-regulated motifs (called Phospho-Degrons or pDegrons) driving UPS degradation of the targeted protein has remained elusive. Indeed, the functional study of such E1-E2-E3 complexes acting on a protein-specific level requires previously or otherwise acquired knowledge of the nature of such degradation complex components. Furthermore, the molecular basis of the interaction between an E3 ligase and its pDegron binding motif on a target protein would require individually optimized in vitro kinase and ubiquitination assays. Here, we describe a novel enzymatically enhanced pull-down method to functionally streamline the discovery and functional validation of the ubiquitin E-ligase components interacting with a phospho-degron containing protein domain and/or sub-domain. The protocol combines key features of a protein kinase and ubiquitination in vitro assay by including them in a pull-down step exerted by a known or putative pDegron-tagged peptide using the cell extracts as a source of enzymatically active post-translational modification (PTM) modifying/binding native proteins. The same method allows studying specific stimuli or treatments towards the recruitment of the molecular degradation complex at the target protein’s phospho-degron site, reflecting in vivo–initiated events further enhanced through the assay design. In order to take full advantage of the method over traditional protein–protein interaction methods, we propose to use this PTM-enhanced (PTMe) pull down both towards the degradation complex discovery/ID phase as well as for the functional pDegron recruitment validation phase, which is the one described in the present protocol both graphically and in a stepwise fashion for reproduceable results.

Key features

• Suitable to study UPS-regulated (a) cytosolic and/or nuclear proteins, (b) intracellular region of transmembrane proteins, and (c) protein sub-domains bearing a known/putative pDegron motif.

• Requires a biotin-tagged recombinant version of the target protein and/or sub-domain.

• Allows the qualitative and quantitative analysis of endogenous ubiquitin (Ub) E-ligases recruitment to a known or putative pDegron bearing protein/sub-domain.

• Allows simultaneous testing of various treatments and/or conditions affecting the phosphorylative and/or ubiquitylation status of the studied pDegron bearing protein/sub-domain and the recruited factors.

Graphical overview

0 Q&A 1835 Views Nov 20, 2021

Comparative cell biology relies on methods that disrupt protein function. Traditional approaches target the gene that encodes the protein of interest via conventional knockout (KO) methodology, conditional Cre-lox system, or recently, flexible protocols based on CRISPR/Cas9. However, these technologies lack precise temporal control (hours), whereby the slow half-lives of proteins may confound measurements, possibly resulting in misleading phenotypes. Targeting the protein itself bypasses issues pertaining to protein half-life, resulting in more acute disruption. An ideal system would enable controllable protein disruption, dependent on the presence or absence of a small molecule, with high temporal control achieved through washout/addition of the small molecule. Here, we outline the use of knockoff, a general method to disrupt membrane proteins based on the NS3/4A protease of the hepatitis C virus. This technique has been used in post-mitotic cells to study the function of long-lived integral membrane proteins and is suitable for the study of other membrane-bound proteins.

Graphic abstract:

Removal of the protease inhibitor induces cleavage from the membrane.

General model of knockoff method. Inh, Inhibitor; POI, Protein of Interest; NS3/4A, Hepatitis C viral protease.

0 Q&A 2593 Views Jul 20, 2021

Inducing loss of function of a target protein using methods such as gene knockout is a powerful and useful strategy for analyzing protein function in cells. In recent years, the CRISPR/Cas-9-based gene knockout technology has been widely used across a variety of eukaryotes; however, this type of simple gene knockout strategy is not applicable to essential genes, which require a conditional knockout system. The auxin-inducible degron (AID) system enables rapid depletion of the target protein in an auxin-dependent manner and has been used to generate conditional mutants in various eukaryotic cell lines. One problem with the AID system is the use of high auxin concentrations for protein degradation, which can cause cytotoxicity. Recently, we established a super-sensitive AID (ssAID) system that allowed a reduction in the amount of auxin required by more than 1,000-fold. We also utilized a single-step method to generate AID-based conditional knockout cells with a ssAID system in various cell lines. In this protocol, we introduce our improved method, which provides a powerful tool for the investigation of the roles of essential genes.

0 Q&A 4554 Views Apr 5, 2021

The majority of cellular proteins are degraded by the 26S proteasome in eukaryotes. However, intrinsically disordered proteins (IDPs), which contain large portions of unstructured regions and are inherently unstable, are degraded via the ubiquitin-independent 20S proteasome. Emerging evidence indicates that plant IDP homeostasis may also be controlled by the 20S proteasome. Relatively little is known about the specific functions of the 20S proteasome and the regulatory mechanisms of IDP degradation in plants compared to other species because there is a lack of systematic protocols for in vitro assembly of this complex to perform in vitro degradation assays. Here, we present a detailed protocol of in vitro reconstitution assay of the 20S proteasome in Arabidopsis by modifying previously reported methods. The main strategy to obtain the 20S core proteasome here is to strip away the 19S regulatory subunits from the 26S proteasome. The protocol has two major parts: 1) Affinity purification of 20S proteasomes from stable transgenic lines expressing epitope-tagged PAG1, an essential component of the 20S proteasome (Procedures A-D) and 2) an in vitro 20S proteasome degradation assay (Procedure E). We anticipate that these protocols will provide simple and effective approaches to study in vitro degradation by the 20S proteasome and advance the study of protein metabolism in plants.

0 Q&A 4315 Views Sep 5, 2020
Ratiometric reporters are tools to dynamically measure the relative abundance of a protein of interest. In these systems, a target protein fused to a fluorescent or bioluminescent reporter is expressed with fixed stoichiometry to a reference protein fused to a second reporter. Both fusion proteins are encoded on a single transcript but are separated during translation by a 2A “self-cleaving” peptide. This approach enables changes in the relative abundance of a target protein to be detected sensitively, reducing variability in expression of the ratiometric reporter transgene that may occur across different tissues or transformation events. We recently developed a set of Gateway-compatible plant transformation vectors termed pRATIO that combine a variety of promoters, fluorescent and bioluminescent reporters, and 2A peptides derived from foot-and-mouth disease virus. Here, we describe in detail how to use the dual-fluorescent ratiometric reporter pRATIO3212 to examine the relative abundance of a target protein after transient expression in Nicotiana benthamiana leaves. For this example, we analyze degradation of the SUPPRESSOR OF MAX2 1 (SMAX1) protein from Arabidopsis thaliana in response to treatments with karrikins and rac-GR24. This protocol provides a simple, rapid, and readily scalable method for in vivo analysis of relative protein abundance in Agrobacterium-infiltrated Nicotiana leaf tissues.
0 Q&A 3077 Views Jul 20, 2020
Strategies to control the levels of key enzymes of bacterial metabolism are commonly based on the manipulation of gene of interest within the target pathway. The development of new protocols towards the manipulation of biochemical processes is still a major challenge in the field of metabolic engineering. On this background, the FENIX (functional engineering of SsrA/NIa-based flux control) system allows for the post-translational regulation of protein levels, providing both independent control of the steady-state protein amounts and inducible accumulation of target proteins. This strategy enables an extra layer of control over metabolic fluxes in bacterial cell factories (see Graphical abstract below). The protocol detailed here describes the steps needed to design FENIX-tagged proteins and to adapt the system to virtually any pathway for fine-tuning of metabolic fluxes.

Graphical abstract

0 Q&A 4521 Views Apr 20, 2020
The auxin-inducible degron (AID) technology was recently adapted for use in the nematode Caenorhabditis elegans. Rapid degradation of C. elegans proteins tagged with an AID is mediated by a plant-specific F-box protein, transport inhibitor response 1 (TIR1), and occurs only in the presence of the phytohormone auxin. The first iteration of this technology elicited protein degradation in C. elegans through a naturally occurring form of auxin, indole-3-acetic acid (IAA). Here, we present a protocol that uses 1-naphthaleneacetic acid, potassium salt (K-NAA), an indole-free synthetic auxin analog. At equal concentration, K-NAA is as effective as IAA in standard nematode growth media (NGM). K-NAA is also effective in physiological buffer (M9), allowing for high-throughput experimentation. The main advantages of K-NAA are twofold: first, its photostability prevents light-induced compound degradation during storage and the production of toxic indole-derivatives during fluorescence microscopy of live cells; and second, its water solubility eliminates the need of using ethanol to dissolve the auxin compound, a solvent that may confound C. elegans lifespan and behavioral assays. In this protocol, we describe our method of degrading C. elegans proteins using K-NAA on solid and in liquid media, as well as our method of analyzing protein degradation.
0 Q&A 2663 Views Apr 5, 2020
Cyclic nucleotide degrading phosphodiesterase (PDE) enzymes are crucial to the fine tuning of cAMP signaling responses, playing a pivotal role in regulating the temporal and spatial characteristics of discrete cAMP nanodomains and hence the activity of cAMP-effector proteins. As a consequence of orchestrating cAMP homeostasis, dysfunctional PDE activity plays a central role in disease pathogenesis. This highlights the need for developing methods that can be used to further understand PDE function and assess the effectiveness of potentially novel PDE therapeutics. Here we describe such an approach, where PDE activity is indirectly measured through the direct quantification of radioactively tagged cAMP (pmol/min-1/mg-1). This method provides a highly sensitive tool for investigating PDE functionality.
0 Q&A 15697 Views Feb 20, 2018
Toxoplasma gondii is a member of the deadly phylum of protozoan parasites called Apicomplexa. As a model apicomplexan, there is a great wealth of information regarding T. gondii’s 8,000+ protein coding genes including sequence variation, expression, and relative contribution to parasite fitness. However, new tools are needed to functionally investigate hundreds of putative essential protein coding genes. Accordingly, we recently implemented the auxin-inducible degron (AID) system for studying essential proteins in T. gondii. Here we provide a step-by-step protocol for examining protein function in T. gondii using the AID system in a tissue culture setting.
0 Q&A 8536 Views Nov 20, 2017
We recently reported an Affinity-directed PROtein Missile (AdPROM) system for the targeted proteolysis of endogenous proteins of interest (POI) (Fulcher et al., 2016 and 2017). AdPROM consists of the Von Hippel Lindau (VHL) protein, a Cullin 2 E3 ligase substrate receptor (Bosu and Kipreos, 2008), conjugated to a high affinity polypeptide binder (such as a camelid nanobody) that recognises the target protein in cells. When introduced in cells, the target protein is recruited to the CUL2 E3 ubiquitin ligase complex for ubiquitin-mediated proteasomal degradation. For target protein recruitment, we have utilised both camelid-derived VHH domain nanobodies as well as synthetic polypeptide monobodies based on the human type III fibronectin domain (Sha et al., 2013; Fridy et al., 2014; Schmidt et al., 2016). In this protocol, we describe detailed methodology involved in generating AdPROM constructs and their application in human cell lines for target protein destruction. AdPROM allows functional characterisation of the POI and its efficiency of target protein destruction overcomes many limitations of RNA-interference approaches, which necessitate long treatments and are associated with off-target effects, and CRISPR/Cas9 gene editing, which is not always feasible.

We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.