Molecular Biology


Protocols in Current Issue
Protocols in Past Issues
0 Q&A 1349 Views Oct 20, 2021

The fission yeast Schizosaccharomyces pombe is an excellent genetically tractable model organism used in the study of conserved eukaryotic cellular biology. One genetic tool in the assessment of gene function is the in vivo overexpression of proteins. Existing overexpression tools have limitations of induction kinetics, dynamic range, and/or system-wide changes due to the induction conditions or inducer. Here, I describe the methodology for the use of a plasmid-based long non-coding RNA (lncRNA)-regulated overexpression system that is induced by the addition of thiamine. This system, termed the pTIN-system (thiamine inducible), utilizes the fast repression kinetics of the thiamine-regulated nmt1+ promoter integrated with the lncRNA regulated tgp1+ promoter. The advantages of the pTIN-system are rapid induction kinetics of gene expression, broad dynamic range, and tunable expression.

2 Q&A 6774 Views May 5, 2021

Recent studies from multiple labs including ours have demonstrated the importance of extrachromosomal circular DNA (eccDNA) from yeast to humans (Shibata et al., 2012; Dillon et al., 2015; Møller et al., 2016; Kumar et al., 2017; Turner et al., 2017; Kim et al., 2020). More recently, it has been found that cancer cells obtain a selective advantage by amplifying oncogenes on eccDNA, which drives genomic instability (Wu et al., 2019; Kim et al., 2020). Previously, we have purified circular DNA and enriched the population using rolling circle amplification followed by high-throughput sequencing for the identification of eccDNA based on the unique junctional sequence. However, eccDNA identification by rolling circle amplification is biased toward small circles. Here, we report a rolling circle-independent method to detect eccDNA in human cancer cells. We demonstrate a sensitive and robust step-by-step workflow for finding novel eccDNAs using ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) combined with a Circle_finder bioinformatics algorithm to predict the eccDNAs, followed by its validation using two independent methods, inverse PCR and metaphase FISH (Fluorescence in situ Hybridization).

0 Q&A 11452 Views May 5, 2017
Plasmid stability can be measured using antibiotic-resistance plasmid derivatives by positive selection. However, highly stable plasmids are below the sensitivity range of these assays. To solve this problem we describe a novel, highly sensitive method to measure plasmid stability based on the selection of plasmid-free cells following elimination of plasmid-containing cells. The assay proposed here is based on an aph-parE cassette. When synthesized in the cell, the ParE toxin induces cell death. ParE synthesis is controlled by a rhamnose-inducible promoter. When bacteria carrying the aph-parE module are grown in media containing rhamnose as the only carbon source, ParE is synthesized and plasmid-containing cells are eliminated. Kanamycin resistance (aph) is further used to confirm the absence of the plasmid in rhamnose grown bacteria.

We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.