Neuroscience


Protocols in Current Issue
Protocols in Past Issues
0 Q&A 148 Views Feb 20, 2023

The functions of sleep remain largely unclear, and even less is known about its role in development. A general strategy to tackle these questions is to disrupt sleep and measure the outcomes. However, some existing sleep deprivation methods may not be suitable for studying the effects of chronic sleep disruption, due to their lack of effectiveness and/or robustness, substantial stress caused by the deprivation method, or consuming a large quantity of time and manpower. More problems may be encountered when applying these existing protocols to young, developing animals, because of their likely heightened vulnerability to stressors, and difficulties in precisely monitoring sleep at young ages. Here, we report a protocol of automated sleep disruption in mice using a commercially available, shaking platform–based deprivation system. We show that this protocol effectively and robustly deprives both non-rapid-eye-movement (NREM) sleep and rapid-eye-movement (REM) sleep without causing a significant stress response, and does not require human supervision. This protocol uses adolescent mice, but the method also works with adult mice.


Graphical abstract




Automated sleep deprivation system. The platform of the deprivation chamber was programmed to shake in a given frequency and intensity to keep the animal awake while its brain and muscle activities were continuously monitored by electroencephalography and electromyography.

0 Q&A 429 Views Jan 20, 2023

Anorexia nervosa (AN) is a devastating neuropsychiatric disease with a prevalence rate of approximately 0.3%–1% among women and morbidity and mortality rates among the highest of all neuropsychiatric disorders. The disease etiology is complex but primarily characterized by reduced food intake and body weight, and intense anxiety and fear associated with gaining weight. Existing rodent models of AN are useful and capture features of the disease, but either require specialized genetic mouse models or are difficult to implement in mice. Here, we describe two simple mouse models of stress-induced anorexia that are easy to implement in basic research labs, and capture core features associated with AN, such as reduced food intake in the context of social/physical stress and increased anxiety-related behavior. These protocols provide reproducible and robust assays for stress-induced anorexia and may be implemented with additional assays to probe the neural circuitry mediating the effects of psychological stress on feeding in mice.


Graphical abstract


0 Q&A 227 Views Jan 5, 2023

In nature, parasitoid wasp infections are a major cause of insect mortality. Parasitoid wasps attack a vast range of insect species to lay their eggs. As a defense, insects evolved survival strategies to protect themselves from parasitoid infection. While a growing number of studies reported both host defensive tactics and parasitoid counter-offensives, we emphasize that this parasite–host relationship presents a unique ecological and evolutionary relevant model that is often challenging to replicate in a laboratory. Although maintaining parasitoid wasp cultures in the laboratory requires meticulous planning and can be labor intensive, a diverse set of wasp species that target many different insect types can be maintained in similar culture conditions. Here, we describe the protocol for culturing parasitoid wasp species on Drosophila larvae and pupae in laboratory conditions. We also detail an egg-laying assay to assess the reproductive modification of Drosophila females in response to parasitoid wasps. This behavioral study is relatively simple and easily adaptable to study environmental or genetic influences on egg-laying, a readout for female germline development. Neither the parasitoid culture conditions or the behavioral assay require special supplies or equipment, making them a powerful and versatile approach in research or teaching laboratory settings.


Graphical abstract


0 Q&A 275 Views Dec 5, 2022

Pavlovian fear conditioning is a widely used procedure to assess learning and memory processes that has also been extensively used as a model of post-traumatic stress disorder (PTSD). Freezing, the absence of movement except for respiratory-related movements, is commonly used as a measure of fear response in non-human animals. However, this measure of fear responses can be affected by a different baseline of locomotor activity between groups and/or conditions. Moreover, fear conditioning procedures are usually restricted to a single conditioned stimulus (e.g., a tone cue, the context, etc.) and thus do not depict the complexity of real-life situations where traumatic memories are composed of a complex set of stimuli associated with the same aversive event. To overcome this issue, we use a conditioned lick suppression paradigm where water-deprived mice are presented with a single conditioned stimulus (CS, a tone cue or the context) previously paired with an unconditioned stimulus (US, a foot shock) while consuming water. We use the ratio of number of licks before and during the CS presentation as a fear measure, thereby neutralizing the potential effect of locomotor activity in fear responses. We further implemented the conditioned lick suppression ratio to assess the effect of cue competition using a compound of contextual and tone cue conditioned stimuli that were extinguished separately. This paradigm should prove useful in assessing potential therapeutics and/or behavioral therapies in PTSD, while neutralizing potential confounding effects between locomotor activity and fear responses on one side, and by considering potential cue-competition effects on the other side.


Graphical abstract




Schematic representation of the compound context-cue condition lick suppression procedure. Illustration reproduced from Bouchekioua et al. (2022).


0 Q&A 857 Views Sep 20, 2022

Feeding behavior is a complex experience that involves not only sensory (i.e., visual, odor, taste, or texture) but also affective or emotional aspects (i.e., pleasure, palatability, or hedonic value) of foods. As such, behavioral tests that assess the hedonic impact of foods are necessary to fully understand the factors involved in ingestive behavior. In this protocol, we use the taste reactivity (TR) test to characterize the hedonic responses of rats to flavors paired with either lithium chloride–induced nausea or internal pain produced by hypertonic NaCl, two treatments that reduce voluntary consumption. This application of the TR test demonstrates how emetic and non-emetic (somatic pain in particular) treatments produce dissociable patterns of hedonic reactions to fluids: only emetic treatments result in the production of aversive orofacial responses, reflecting conditioned nausea, whereas somatic pain produces immobility, reflecting conditioned fear. Other methods, such as the microstructural analysis of licking behavior, do not reliably distinguish conditioned nausea and fear, a key advantage of the more selective TR procedure. This protocol also contains guidance for adaptation to other species and designs.

0 Q&A 1039 Views Aug 20, 2022

C. elegans shows robust and reproducible behavioral responses to oxygen. Specifically, worms prefer O2 levels of 5–10% and avoid too high or too low O2. Their O2 preference is not fixed but shows plasticity depending on experience, context, or genetic background. We recently showed that this experience-dependent plasticity declines with age, providing a useful behavioral readout for studying the mechanisms of age-related decline of neural plasticity. Here, we describe a technique to visualize behavioral O2 preference and its plasticity in C. elegans, by creating spatial gradients of [O2] in a microfluidic polydimethylsiloxane (PDMS) chamber and recording the resulting spatial distribution of the animals.

0 Q&A 1298 Views Jun 20, 2022

Rodent spatial navigation is a key model system for studying mammalian cognition and its neural mechanisms. Of particular interest is how animals memorize the structure of their environments and compute multi-step routes to a goal. Previous work on multi-step spatial reasoning has generally involved placing rodents at the start of a maze until they learn to navigate to a reward without making wrong turns. It thus remains poorly understood how animals rapidly learn about the structure of naturalistic open environments with goals and obstacles. Here we present an assay in which mice spontaneously memorize two-step routes in an environment with a shelter and an obstacle. We allow the mice to explore this environment for 20 min, and then we remove the obstacle. We then present auditory threat stimuli, causing the mouse to escape to the shelter. Finally, we record each escape route and measure whether it targets the shelter directly (a ‘homing-vector’ escape) or instead targets the location where the obstacle edge was formerly located (an ‘edge-vector’ escape). Since the obstacle is no longer there, these obstacle-edge-directed escape routes provide evidence that the mouse has memorized a subgoal location,i.e., a waypoint targeted in order to efficiently get to the shelter in the presence of an obstacle. By taking advantage of instinctive escape responses, this assay probes a multi-step spatial memory that is learned in a single session without pretraining. The subgoal learning phenomenon it generates can be useful not only for researchers working on navigation and instinctive behavior, but also for neuroscientists studying the neural basis of multi-step spatial reasoning.

0 Q&A 1712 Views Jun 20, 2022

Caenorhabditis elegans is a simple metazoan that is often used as a model organism to study various human ailments with impaired motility phenotypes, including protein conformational diseases. Numerous motility assays that measure neuro-muscular function have been employed using C. elegans. Here, we describe “time-off-pick" (TOP), a novel assay for assessing motility in C. elegans. TOP is conducted by sliding an eyebrow hair under the mid-section of the worm and counting the number of seconds it takes for the worm to crawl completely off. The time it takes for the worm to crawl off the eyebrow hair is proportional to the severity of its motility defect. Other readouts of motility include crawling or swimming phenotypes, and although widely established, have some limitations. For example, worms that are roller mutants are less suitable for crawling or swimming assays. We demonstrated that our novel TOP assay is sensitive to age-dependent changes in motility, thus, providing another more inclusive method to assess motor function in C. elegans.


Graphical abstract:


Conceptual overview of the “time-off-pick” (TOP) assay.

Various C. elegans models exhibit age-dependent defects in motility. The time it takes for a worm to crawl off of an eyebrow pick that is slid under its mid-section is measured in TOP seconds. A greater TOP is indicative of a greater motility defect. Eventually, worms with phenotypes that lead to paralysis will not be able to leave the pick.


0 Q&A 1119 Views Feb 20, 2022

Understanding the neural basis of reward processing is a major concern, as it holds the key to alleviating symptoms of addiction and poor mental health. However, this goal seems difficult to attain as long as research on reward processing cannot easily be compared across species and reward types, due to methodological differences and the presence of confounding factors. We recently developed an experimental paradigm that allows monitoring anticipatory and consummatory responses to matched social (touch) and nonsocial (food) rewards in adult humans. The following protocol describes in detail the materials and the paradigm, which measures reward wanting and liking with a real effort task and subjective ratings. It can also be used in combination with facial electromyography (EMG), brain imaging (e.g., fMRI), and pharmacological interventions. It is our firm belief that the field will profit greatly from more research being conducted on reward processing using this and similarly controlled paradigms, which allow for cross-species comparison.

1 Q&A 1525 Views Feb 20, 2022

In this protocol, we describe for the first time a judgment bias paradigm to phenotype the way zebrafish assess ambiguous stimuli. We have developed and validated a protocol for a judgment bias test based on a Go/No-go task, and performed using a half radial maze. After a habituation phase, fish are trained to discriminate between two reference arms [positive (P) and negative (N)]. For this purpose, they experience a positive event (food reward in P), when presented with a specific location/color cue, and a negative event (chasing with net in N), when presented with a different location/color cue. Acquisition of the discrimination learning between P and N is revealed by the latencies to enter the experimental arms of the behavioral maze being significantly lower for the P arm than for the N arm. Once zebrafish are able to discriminate between P and N arms, their latency to enter other maze arms spatially located between P and N [(Near Positive (NP), Ambiguous (A) = half-way between P and N, and Near Negative (NN)] is analyzed. Latencies (L) to enter NP, A and NN maze arms are interpreted as indicating the individual expectancy to experience a reward/punishment on each of them. A judgment bias score (JBS) is calculated from the latencies to enter the P, N, and A arms for each fish [JBS = (LA–LP)*100/(LN–LP)], based on which fish can be classified into an optimistic/pessimistic axis. A JBS below 50 indicates that fish perceive the ambiguous stimulus as a positive one (optimistic bias), while JBS above 50 indicates that fish perceive the ambiguous stimulus as a negative one (pessimistic bias). However, for classification criteria, it could be advantageous to use the method of selecting extreme phenotypes (e.g., upper and lower quartiles of the JBS), since JBS in zebrafish falls into a bimodal distribution (unpublished data). Therefore, this protocol provides a unique, inexpensive, and effective alternative to other methods of measuring affective states in zebrafish that might be of great interest to a broad target audience and have a large number of applications.


Graphic abstract:




Flow chart of the judgment bias protocol in zebrafish.




We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.