Neuroscience


Protocols in Current Issue
Protocols in Past Issues
0 Q&A 997 Views Sep 20, 2022

The activity of numerous autophagy-related proteins depends on their phosphorylation status, which places importance on understanding the responsible kinases and phosphatases. Great progress has been made in identifying kinases regulating autophagy, but much less is known about the phosphatases counteracting their function. Genetic screens and modern proteomic approaches provide powerful tools to identify candidate phosphatases, but further experiments are required to assign direct roles for candidates. We have devised a novel protocol to test the role of purified phosphatases in dephosphorylating specific targets in situ. This approach has the potential to visualize context-specific differences in target dephosphorylation that are not easily detected by lysate-based approaches such as Western blots.


Graphical abstract:




0 Q&A 909 Views Sep 5, 2022

Mitochondrial dysfunction is associated with perturbations in the cellular oxidative status, changes in energy production and metabolic rate, and the onset of pathological processes. Classic methods of assessing mitochondrial dysfunction rely on indirect measures, such as evaluating mitochondrial DNA copy numbers, or direct but more costly and skilled techniques, such as electron microscopy. The protocol presented here was recently implemented to evaluate mitochondrial dysfunction in response to insecticide exposure in Drosophila melanogaster larvae, and it relies on the use of a previously established MitoTimer mutant strain. MitoTimer is a genetically engineered mitochondrial protein that shows green fluorescence when newly synthetized, irreversibly turning into red as mitochondria age. The protocol described here allows for the easy and direct assessment of shifts in mitochondrial turnover, with tissue-specific accuracy. This protocol can be adapted to assess changes in mitochondrial turnover in response to drugs, rearing conditions, and/or mutations in larva, pupa, or adult fruit flies.

0 Q&A 2105 Views Jul 5, 2022

The quantification of labeled cells in tissue sections is crucial to the advancement of biological knowledge. Traditionally, this was a tedious process, requiring hours of careful manual counting in small portions of a larger tissue section. To overcome this, many automated methods for cell analysis have been developed. Recent advances in whole slide scanning technologies have provided the means to image cells in entire tissue sections. However, common automated analysis tools do not have the capacity to deal with the large image files produced. Herein, we present a protocol for the quantification of two fluorescently labeled cell populations, namely pericytes and microglia, in whole brain tissue sections. This protocol uses custom-made scripts within the open source software QuPath to provide a framework for the careful optimization and validation of automated cell detection parameters. Images obtained from a whole-slide scanner are first loaded into a QuPath project. Manual counts are performed on small sample regions to optimize cell detection parameters prior to automated quantification of cells across entire brain regions. Even though we have quantified pericytes and microglia, any fluorescently labeled cell with clear labeling in and around the nucleus can be analyzed using these methods. This protocol provides a user-friendly and cost-effective framework for the automated analysis of whole tissue sections.

0 Q&A 1707 Views May 5, 2022

Mammalian tissues are highly heterogenous and complex, posing a challenge in understanding the molecular mechanisms regulating protein expression within various tissues. Recent studies have shown that translation at the level of the ribosome is highly regulated, and can vary independently of gene expression observed at a transcriptome level, as well as between cell populations, contributing to the diversity of mammalian tissues. Earlier methods that analyzed gene expression at the level of translation, such as polysomal- or ribosomal-profiling, required large amounts of starting material to isolate enough RNA for analysis by microarray or RNA-sequencing. Thus, rare or less abundant cell types within tissues were not able to be properly studied with these methods. Translating ribosome affinity purification (TRAP) utilizes the incorporation of an eGFP-affinity tag on the large ribosome subunit, driven by expression of cell-type specific Cre-lox promoters, to allow for identification and capture of transcripts from actively translating ribosomes in a cell-specific manner. As a result, TRAP offers a unique opportunity to evaluate the entire mRNA translation profile within a specific cell type, and increase our understanding regarding the cellular complexity of mammalian tissues.


Graphical abstract:



Schematic demonstrating TRAP protocol for identifying ribosome-bound transcripts specifically within cerebellar Purkinje cells.


0 Q&A 1303 Views Jan 20, 2022

G-protein coupled signaling pathways are organized into multi-protein complexes called signalosomes that are located within and on cellular membranes. We describe the use of silica nanoparticles coated with a unilamellar phospholipid bilayer (lipobeads) to reconstitute the activated photoreceptor G-protein α-subunit (Gtα*) with its cognate effector (phosphodiesterase-6; PDE6) for biochemical and structural studies of the activation mechanism regulating this GPCR signaling pathway. Lipobeads are prepared by resuspending dried-down phospholipid mixtures with monodisperse 70 nm silica particles, followed by extrusion through a 100 nm membrane filter. This uniform and supported liposomal preparation is easily sedimented, permitting the separation of soluble from membrane-associated proteins. Upon loading lipobeads with Gtα* and PDE6, we find that activation of PDE6 catalysis by Gtα* occurs much more efficiently than in the absence of membranes. Chemical cross-linking of membrane-confined proteins allows detection of changes in protein-protein interactions, resulting from G-protein activation of PDE6. The advantages of using lipobeads over partially purified membrane preparations or traditional liposomal preparations are generally applicable to the study of other membrane-confined signal transduction pathways.


0 Q&A 1848 Views Dec 20, 2021

The functional performance of a cell depends on how macromolecules, in particular proteins, come together in a precise orientation, how they assemble into protein complexes and interact with each other. In order to study protein-protein interactions at a molecular level, a variety of methods to investigate these binding processes yield affinity constants and/or the identification of binding regions. There are several well-established biophysical techniques for biomolecular interaction studies, such as fluorescence spectroscopy and surface plasmon resonance. Although these techniques have been proven to be efficient, they either need labeling or immobilization of one interaction partner. Backscattering interferometry (BSI) is a label-free detection method, which allows label- and immobilization-free interaction analysis under physiologically relevant conditions with high sensitivity and in small volumes. We used BSI to measure the interaction of the neuronal calcium sensor recoverin with its target G protein-coupled receptor kinase 1 (GRK1) as a model system. Increasing concentrations of purified recoverin were mixed with a specific concentration of a GRK1 fusion protein. In this protocol, we provide a full description of the instrumental setup, data acquisition, and evaluation. Equilibrium dissociation constants of recoverin-GRK1 interaction determined by the BSI instrumental setup are in full agreement with affinity constants obtained by different methods as described in the literature.


0 Q&A 1903 Views Nov 20, 2021

In this protocol, we describe the analysis of protein stability over time, using synthesis shutoff. As an example, we express HA-tagged yeast mitofusin Fzo1 in Saccharomyces cerevisiae and inhibit translation via cycloheximide (CHX). Proteasomal inhibition with MG132 is performed, as an optional step, before the addition of CHX. Proteins are extracted via trichloroacetic acid (TCA) precipitation and subsequently separated via SDS-PAGE. Immunoblotting and antibody-decoration are performed to detect Fzo1 using HA-specific antibodies. We have adapted the method of blocking protein translation with cycloheximide to analyze the stability of high molecular weight proteins, including post-translational modifications and their impact on protein turnover.

0 Q&A 1631 Views Nov 20, 2021

Comparative cell biology relies on methods that disrupt protein function. Traditional approaches target the gene that encodes the protein of interest via conventional knockout (KO) methodology, conditional Cre-lox system, or recently, flexible protocols based on CRISPR/Cas9. However, these technologies lack precise temporal control (hours), whereby the slow half-lives of proteins may confound measurements, possibly resulting in misleading phenotypes. Targeting the protein itself bypasses issues pertaining to protein half-life, resulting in more acute disruption. An ideal system would enable controllable protein disruption, dependent on the presence or absence of a small molecule, with high temporal control achieved through washout/addition of the small molecule. Here, we outline the use of knockoff, a general method to disrupt membrane proteins based on the NS3/4A protease of the hepatitis C virus. This technique has been used in post-mitotic cells to study the function of long-lived integral membrane proteins and is suitable for the study of other membrane-bound proteins.


Graphic abstract:




Removal of the protease inhibitor induces cleavage from the membrane.

General model of knockoff method. Inh, Inhibitor; POI, Protein of Interest; NS3/4A, Hepatitis C viral protease.


0 Q&A 1363 Views Oct 20, 2021

The efficient ATP production in mitochondria relies on the highly specific organization of its double membrane. Notably, the inner mitochondrial membrane (IMM) displays a massive surface extension through its folding into cristae, along which concentrate respiratory complexes and oligomers of the ATP synthase. Evidence has accumulated to highlight the importance of a specific phospholipid composition of the IMM to support mitochondrial oxidative phosphorylation. Contribution of specific phospholipids to mitochondrial ATP production is classically studied by modulating the activity of enzymes involved in their synthesis, but the interconnection of phospholipid synthesis pathways often impedes the determination of the precise role of each phospholipid. Here, we describe a protocol to specifically enrich mitochondrial membranes with cardiolipin or phosphatidylcholine, as well as a fluorescence-based method to quantify phospholipid enrichment. This method, based on the fusion of lipid vesicles with isolated mitochondria, may further allow a precise evaluation of phospholipid contribution to mitochondrial functions.




We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.