Plant Science


Categories

Protocols in Current Issue
Protocols in Past Issues
0 Q&A 2578 Views Dec 20, 2021

Roots are the prime organ for nutrient and water uptake and are therefore fundamental to the growth and development of plants. However, physical challenges of a heterogeneous environment and diverse edaphic stresses affect root growth in soil. Compacted soil is a serious global problem, causing inhibition of root elongation, which reduces surface area and impacts resource foraging. Visualisation and quantification of roots in soil is difficult due to this growth substrate’s opaque nature; however, non-destructive imaging technologies are now becoming more widely available to plant and soil scientists working to address this challenge. We have recently developed an integrated approach, combining X-ray Computed Tomography (X-ray CT) and confocal microscopy to image roots grown in compacted soil conditions from a plant to a cellular scale. The method is suited to visualize cellular responses of root tips grown in both non-compacted and compacted soils. This protocol presents a fully integrated workflow, including soil column preparation, creation of compaction conditions, plant growth, imaging, and quantification of root adaptive responses at a cellular scale.


0 Q&A 3574 Views Mar 5, 2021

Targeted metabolomics is a useful approach to evaluate crop breeding studies. Antioxidant and flavor-related traits are of increasing interest and are considered quality traits in tomato breeding. The present study presents chromatographic methods to study antioxidants (carotenoids, vitamin C, vitamin E, phenolic compounds, and glutathione) and flavor-related characters (sugars and organic acids) in tomato. Two different extraction methods (for polar and apolar entities) were applied to isolate the targeted compounds. The extraction methods developed in this work were time and cost-effective since no further purification was needed. Carotenoids, vitamin C, glutathione, and phenolic acids were analyzed by HPLC-PDA using a RP C18 column at an appropriate wavelength for each compound. Vitamin E and sugars were analyzed by HPLC with RP C18 and NH2 columns and detected by FLD and RI detectors, respectively. In addition, organic acids were analyzed with GC-FID using a Rtx 5DA column after derivatization with MSTFA. As a result, sensitive analytical methods to quantify important plant metabolites were developed and are described herein. These methods are not only applicable in tomato but are also useful to characterize other species for flavor-related and antioxidant compounds. Thus, these protocols can be used to guide selection in crop breeding.

0 Q&A 2966 Views Jul 20, 2020
Polyethylene glycol calcium (PEG-Ca2+)-mediated transfection allows rapid and efficient examination to analyze diverse cellular functions of genes of interest. In plant cells, macromolecules, such as DNA, RNA and protein, are delivered into protoplasts derived from somatic tissues or calli via PEG-Ca2+ transfection. To broaden and develop the scope of investigations using plant gametes and zygotes, a procedure for direct delivery of macromolecules into these cells has recently been established using PEG-Ca2+ transfection. This PEG-Ca2+-mediated delivery into rice egg cells/zygotes consists of four microtechniques, (i) isolation of gametes, (ii) production of zygotes by electrofusion of gametes, (iii) PEG-Ca2+-mediated delivery of macromolecules into isolated egg cells or produced zygotes, and (iv) culture and subsequent analyses of the transfected egg cells/zygotes. Because the full protocol for microtechniques (i) and (ii) have already been reported in Toda et al., 2016, microtechniques (iii) and (iv) are mainly described in this protocol.



We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.