Microbiology


Categories

Protocols in Current Issue
Protocols in Past Issues
0 Q&A 1799 Views Jul 20, 2022

Bacteriocins are antimicrobial peptides with activity against antibiotic resistant bacterial pathogens. Here, we describe a set of methods aimed at purifying, identifying, and characterizing new bacteriocins. The purification consists of ammonium sulphate precipitation, cation-exchange chromatography, and reversed-phase chromatography. The yield of the bacteriocin is quantified by bacteriocin antimicrobial activity in a microtiter plate assay after each purification step. The mass of the purified bacteriocin is assessed by MALDI TOF MS analysis of the active fractions after reversed-phase chromatography. The mass is compared with the theoretical mass based on genetic information from the whole genome sequencing of the bacteriocin producer strain. Physicochemical characterization is performed by assessing antimicrobial activity following heat and protease treatments. Fluorescent techniques are used to examine the capacity of the bacteriocin to disrupt membrane integrity. Herein a set of protocols for purification and characterization of the bacteriocin nisin Z is used as a typical example in this paper.

0 Q&A 3517 Views May 5, 2022

Bacterial studies based on growth curves are common in microbiology and related fields. Compared to the standard photometer and cuvette based protocols, bacterial growth curve measurements with microplate readers provide better temporal resolution, higher efficiency, and are less laborious, while analysis and interpretation of the microplate-based measurements are less straightforward. Recently, we developed a new analysis method for evaluating bacterial growth with microplate readers based on time derivatives. Here, we describe a detailed protocol for this development and provide the homemade program for the new analysis method.

0 Q&A 3772 Views Feb 5, 2022

Coronaviruses are important human pathogens, among which the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for the COVID-19 pandemic. To combat the SARS-CoV-2 pandemic, there is a pressing need for antivirals, especially broad-spectrum antivirals that are active against all seven human coronaviruses (HCoVs). For this reason, we are interested in developing antiviral assays to expedite the drug discovery process. Here, we provide the detailed protocol for the cytopathic effect (CPE) assay and the plaque assay for human coronaviruses 229E (HCoV-229E), HCoV-OC43, and HCoV-NL63, to identify novel antivirals against HCoVs. Neutral red was used in the CPE assay, as it is relatively inexpensive and more sensitive than other reagents. Multiple parameters including multiplicity of infection, incubation time and temperature, and staining conditions have been optimized for CPE and plaque assays for HCoV-229E in MRC-5, Huh-7, and RD cell lines; HCoV-OC43 in RD, MRC-5, and BSC-1 cell lines, and HCoV-NL63 in Vero E6, Huh-7, MRC-5, and RD cell lines. Both CPE and plaque assays have been calibrated with the positive control compounds remdesivir and GC-376. Both CPE and plaque assays have high sensitivity, excellent reproducibility, and are cost-effective. The protocols described herein can be used as surrogate assays in the biosafety level 2 facility to identify entry inhibitors and protease inhibitors for SARS-CoV-2, as HCoV-NL63 also uses ACE2 as the receptor for cell entry, and the main proteases of HCoV-OC43 and SARS-CoV-2 are highly conserved. In addition, these assays can also be used as secondary assays to profile the broad-spectrum antiviral activity of existing SARS-CoV-2 drug candidates.


0 Q&A 1943 Views Dec 5, 2021

Control of malaria caused by Plasmodium vivax can be improved by the discovery and development of novel drugs against the parasite’s liver stage, which includes relapse-causing hypnozoites. Several recent reports describe breakthroughs in the culture of the P. vivax liver stage in 384-well microtiter plates, with the goal of enabling a hypnozoite-focused drug screen. Herein we describe assay details, protocol developments, and different assay formats to interrogate the chemical sensitivity of the P. vivax liver stage in one such medium-throughput platform. The general assay protocol includes seeding of primary human hepatocytes which are infected with P. vivax sporozoites generated from the feeding of Anopheles dirus mosquitoes on patient isolate bloodmeals. This protocol is unique in that, after source drug plates are supplied, all culture-work steps have been optimized to preclude the need for automated liquid handling, thereby allowing the assay to be performed within resource-limited laboratories in malaria-endemic countries. Throughput is enhanced as complex culture methods, such as extracellular matrix overlays, multiple cell types in co-culture, or hepatic spheroids, are excluded as the workflow consists entirely of routine culture methods for adherent cells. Furthermore, installation of a high-content imager at the study site enables assay data to be read and transmitted with minimal logistical delays. Herein we detail distinct assay improvements which increase data quality, provide a means to limit the confounding effect of hepatic metabolism on assay data, and detect activity of compounds with a slow-clearance phenotype.


Graphical abstract:



Overview of P. vivax liver stage screening assay performed at the Institute Pasteur of Cambodia.


0 Q&A 2472 Views Jun 5, 2021

Plasmodium falciparum is a unicellular eukaryotic parasite that causes malaria in humans. The parasite is spread by Anopheles mosquitoes after ingestion of sexual stage parasites known as gametocytes. Malaria transmission depends on parasites switching from the disease-causing asexual blood forms to male and female gametocytes. The current protocol allows the simultaneous isolation of male and female parasites from the same population to study this critical lifecycle stage in a sex-specific manner. We have generated a transgenic P. falciparum cell line that expresses a GFP-tagged parasite protein in female, but not male, parasites. Gametocyte production is stress induced and, through a series of steps, sexual stage parasites are enriched relative to uninfected red blood cells or red blood cells infected with asexual stage parasites. Finally, male and female gametocytes are separated by fluorescence-activated cell sorting. This protocol allows for the separation of up to 12 million live male and female parasites from the same population, which are amenable to further analysis.

0 Q&A 2927 Views May 20, 2021

Antimicrobial-resistant Mycobacterium tuberculosis (Mtb) causes over 200,000 deaths globally each year. Current assays of antimicrobial resistance require knowledge of the mutations that confer drug resistance or long periods of culture time to test growth under drug pressure. We present ODELAM (One-cell Doubling Evaluation of Living Arrays of Mycobacterium), a time-lapse microscopy-based method that observes individual cells growing into microcolonies. This protocol describes sample and media preparation and contains instructions for assembling the ODELAM sample chamber. The ODELAM sample chamber is designed to provide a controlled environment to safely observe the growth of Mtb by time-lapse microscopy on an inverted wide-field microscope. A brief description of the ODELAM software is also provided here. ODELAM tracks up to 1500 colony forming units per region of interest and can observe up to 96 regions for up to seven days in a single experiment. This technique allows the quantification of population heterogeneity. ODELAM enables rapid quantitative measurements of growth kinetics in as few as 30 h under a wide variety of environmental conditions.


Graphic abstract:



Schematic representation of the ODELAM platform


1 Q&A 6413 Views Apr 20, 2021

Lysogenic phages can integrate into their bacterial host’s genome, potentially transferring any genetic information they possess including virulence or resistance genes, and are therefore routinely excluded from therapeutic applications. Lysogenic behavior is typically seen in phages that create turbid plaques or possess subpar bactericidal activity; yet, these are not definitive indicators. As a result, the presence of integrase genes is often used as a hallmark for lysogenic behavior; however, the accuracy of genetic screening for lysogeny depends on the quality of the extraction, sequencing and assembly of the phage genome, and database comparison. The present protocol describes a simple phenotypic test that can be used to screen therapeutically relevant phages for lysogenic behavior. This test relies on the identification of spontaneous phage release from their lysogenized host and can be reliably used in cases where no sequencing data are available. The protocol does not require specialized equipment, is not work-intensive, and is broadly applicable to any phage with an easily culturable bacterial host, making it particularly amenable to settings with limited resources.

Graphical abstract:

Screening pipeline for lysogen activity of a given phage

0 Q&A 5275 Views Mar 5, 2021

Next generations sequencing (NGS) has become an important tool in biomedical research. The Primer ID approach combined with the MiSeq platform overcomes the limitation of PCR errors and reveals the true sampling depth of population sequencing, making it an ideal tool to study mutagenic effects of potential broad-spectrum antivirals on RNA viruses. In this report we describe a protocol using Primer ID sequencing to study the mutations induced by antivirals in a coronavirus genome from an in vitro cell culture model and an in vivo mouse model. Viral RNA or total lung tissue RNA is tagged with Primer ID-containing cDNA primers during the initial reverse transcription step, followed by two rounds of PCR to amplify viral sequences and incorporate sequencing adaptors. Purified and pooled libraries are sequenced using the MiSeq platform. Sequencing data are processed using the template consensus sequence (TCS) web-app. The Primer ID approach provides an accurate sequencing protocol to measure mutation error rates in viral RNA genomes and host mRNA. Sequencing results suggested that β-D-N4-hydroxycytidine (NHC) greatly increased the transition substitution rate but not the transversion substitution rate in the viral RNA genomes, and cytosine (C) to uridine (U) was found as the most frequently seen mutation.

0 Q&A 2806 Views Jan 20, 2021

Antibacterial coatings have currently gained great importance in biomedical technology investigations. Because of the spatial arrangement of the film coatings, evaluation of antibacterial activity presents a new challenge regarding traditional bacterial counting methods. In this protocol, four clinically relevant pathogens, Salmonella typhimurium, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were incubated on titania mesostructured thin film coatings for 24 h. Then, cell viability was studied considering three methods: counting of the number of colony forming units (CFU), live/dead staining, and quantification of extracellular DNA in suspension. Firstly, bacterial count was determined by the standard plate-count technique. Secondly, bacteria membrane integrity was evaluated by utilization of two fluorescent dyes, which allow distinction between live (membrane intact) and dead (membrane disrupted) bacteria. Lastly, extracellular DNA was quantified by spectrophotometry. In this manner, the three aforementioned techniques enabled the study of bacterial viability by qualitative and quantitative analyses.

0 Q&A 4732 Views Jan 20, 2021

The in vivo toxicity of new metallodrugs either as Small Bioactive Molecules (SBAMs) or Conjugates of Metals with Drugs (CoMeDs) or their hydrogels such as with hydroxyethyl-methacrylate (HEMA) (pHEMA@SBAMs or pHEMA@CoMeDs) are evaluated by the brine shrimp assay. Thus individuals of Artemia salina larvae are incubated in saline solutions with SBAMs, CoMeDs, pHEMA@SBAMs or pHEMA@CoMeDs or without for 24 h. The toxicity is then determined in terms of the mortality rate of brine shrimp larvae. Brine shrimp assay is a low cost, safe, no required feeding during the assay, while it requiring only a small amount of the tested agent.




We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.