Biochemistry


Categories

Protocols in Current Issue
Protocols in Past Issues
0 Q&A 10572 Views Mar 20, 2017
This protocol describes a method to extract ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) from diatoms (Bacillariophyta) to determine catalytic performance. This protocol has been adapted from use in cyanobacteria and higher plants (Andrews, 1988; Whitney and Sharwood, 2007). First part (steps A1-A3) of the extraction provides a crude extract of Rubisco that is sufficient for carboxylation assays to measure the Michaelis constant for CO2 (KC) and the catalytic turnover rate (kcatc). However, the further purification steps outlined (steps B1-B4) are needed for measurements of Rubisco CO2/O2 Specificity (SC/O, [Kane et al., 1994]).
0 Q&A 18908 Views May 5, 2015
In this protocol, to analyze PSII activity in photosynthesis, we measure the Fv/Fm (Fv=Fm ± Fo) value (Fo and Fm are the minimum and maximum values of chlorophyll fluorescence of dark-adapted leaves, respectively). Fv/Fm is a reliable marker of photo- inhibition (Krause et al., 1988). Chlorophyll fluorescence in leaves was measured at room temperature using a photosynthesis yield analyzer (MINI- PAM, Walz, Effeltrich, Germany) and a pulse-amplitude-modulated (PAM) fluorometer (TEACHING-PAM, Walz, Effeltrich, Germany).
4 Q&A 34527 Views May 5, 2015
This is a protocol for precise measurement of chlorophyll a and total carotenoid concentrations in cyanobacteria cells. Cellular chlorophyll concentration is one of the central physiological parameters, routinely followed in many research areas ranging from stress physiology to biotechnology. Carotenoids concentration is often related to cellular stress level; combined pigments assessment provides useful insight into cellular physiological state. The current protocol was established to minimize time and equipment requirements for the routine pigments analysis. It is important to note that this protocol is suitable only for cyanobacteria containing chlorophyll a, and is not designed for species containing other chlorophyll molecules.
0 Q&A 11939 Views Feb 5, 2015
Intermediates of tetrapyrrole biosynthetic pathway are low-abundant compounds, and their quantification is usually difficult, time consuming and requires large amounts of input material. Here, we describe a method allowing fast and accurate quantification of almost all intermediates of the heme and chlorophyll biosynthesis, including mono-vinyl and di-vinyl forms of (proto) chlorophyllide, using just a few millilitres of the cyanobacterial culture. Extracted precursors are separated by High Performance Liquid Chromatography system (HPLC) and detected by two ultra-sensitive fluorescence detectors set to different wavelengths.
2 Q&A 32886 Views Jul 20, 2013
The protocol has four sub-protocols, which are about the measurement of malondialdehyde, chlorophyll proline, soluble sugar, and glutathione content, respectively, in Arabidopsis seedling by using spectrophotometer. These methods are simple, effective and reproducible, which will help the researchers who are not familiar with these approaches, quickly get reliable results.
0 Q&A 9650 Views Jun 5, 2013
35S pulse labelling of proteins is used to attach a radioactive label to newly synthesized proteins, as sulfur is an element that is mainly present in proteins (Fleischmann and Rochaix 1999). Depending on your organism’s uptake mechanisms you need cysteine, methionine or sulfuric acid as a source of radioactive sulfur. This example uses Chlamydomonas cells and H235SO4 (Schwarz et al., 2012).
0 Q&A 9218 Views Aug 20, 2012
This is an accurate method to assess the rate of chlorophyll biosynthesis in vivo in cyanobacteria. Given that labeled glutamate is used as the very early precursor of chlorophyll together with a short pulse of labeling (30 min), this method provides information about the metabolic flow through the whole chlorophyll biosynthetic pathway on a short timescale.



We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.