Molecular Biology


Categories

Protocols in Current Issue
Protocols in Past Issues
0 Q&A 3937 Views Sep 20, 2020
Highly sensitive quantitative protein profiling can play a key role in the early diagnosis of diseases, such as autoimmune diseases and cancer. We developed a modified protein-oligonucleotide conjugation method termed HaloTag-mediated barcoding, for quantifying protein molecules at a higher sensitivity than conventional protein quantification methods. This novel and efficient conjugation method can be used to prepare HaloTag-barcoded proteins using a click chemistry-based labeling technique. Here, we describe the preparation of protein-DNA complexes and detection of protein-protein interactions which can be used in a HaloTag protein barcode assay to detect an antibody. The protocol includes procedures for preparing the ligand-oligonucleotide complex, plasmid DNA preparation for protein expression, and preparation of the protein-oligonucleotide complex. The described click reaction-based protocols simplify the conventional amine-ester reaction methods which require additional steps for chromatography purification.
0 Q&A 3484 Views Jun 20, 2020
The orientation of a DNA-binding protein bound on DNA is determinative in directing the assembly of other associated proteins in the complex for enzymatic action. As an example, in a replisome, the orientation of the DNA helicase at the replication fork directs the assembly of the other associated replisome proteins. We have recently determined the orientation of Saccharalobus solfataricus (Sso) Minichromosome maintenance (MCM) helicase at a DNA fork utilizing a site-specific DNA cleavage and mapping assay. Here, we describe a detailed protocol for site-specific DNA footprinting using 4-azidophenacyl bromide (APB). This method provides a straightforward, biochemical method to reveal the DNA binding orientation of SsoMCM helicase and can be applied to other DNA binding proteins.
0 Q&A 7409 Views Feb 5, 2018
Nucleosomes organize the eukaryotic genome into chromatin. In cells, nucleosome assembly relies on the activity of histone chaperones, proteins with high binding affinity to histones. At least a subset of histone chaperones promotes histone deposition in vivo. However, it has been challenging to characterize this activity, due to the lack of quantitative assays.

Here we developed a quantitative nucleosome assembly (NAQ) assay to measure the amount of nucleosome formation in vitro. This assay relies on a Micrococcal nuclease (MNase) digestion step that yields DNA fragments protected by the deposited histone proteins. A subsequent run on the Bioanalyzer machine allows the accurate quantification of the fragments (length and amount), relative to a loading control. This allows us to measure nucleosome formation by following the signature DNA length of ~150 bp. This assay finally enables the characterization of the nucleosome assembly activity of different histone chaperones, a step forward in the understanding of the functional roles of these proteins in vivo.
0 Q&A 6789 Views Mar 20, 2017
Quantitative measurement of proteins binding to DNA is a requisite to fully characterize the structural determinants of complex formation necessary to understand the DNA transactions that regulate cellular processes. Here we describe a detailed protocol to measure binding affinity of the adeno-associated virus (AAV) Rep68 protein for the integration site AAVS1 using fluorescent anisotropy. This protocol can be used to measure the binding constants of any DNA binding protein provided the substrate DNA is fluorescently labeled.



We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.