Yu Sasano
Research fields
  • Molecular biology
Personal information

Education

Ph.D in Agriculture, Division of Applied Life Sciences, Kyoto University, 2008

Current position

Associate Professor, Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan

Publications

  1. Sasano, Y., Kariya, T., Usugi, S., Sugiyama, M. and Harashima, S. (2017). Molecular breeding of Saccharomyces cerevisiae with high RNA content by harnessing essential ribosomal RNA transcription regulator. AMB Express 7(1): 32.
  2. Sasano, Y., Nagasawa, K., Kaboli, S., Sugiyama, M. and Harashima, S. (2016). CRISPR-PCS: a powerful new approach to inducing multiple chromosome splitting in Saccharomyces cerevisiae. Sci Rep 6: 30278.
  3. Kaboli, S., Miyamoto, T., Sunada, K., Sasano, Y., Sugiyama, M. and Harashima, S. (2016). Improved stress resistance and ethanol production by segmental haploidization of the diploid genome in Saccharomyces cerevisiae. J Biosci Bioeng 121(6): 638-644.
  4. Natesuntorn, W., Iwami, K., Matsubara, Y., Sasano, Y., Sugiyama, M., Kaneko, Y. and Harashima, S. (2015). Genome-wide construction of a series of designed segmental aneuploids in Saccharomyces cerevisiae. Sci Rep 5: 12510.
  5. Numamoto, M., Tagami, S., Ueda, Y., Imabeppu, Y., Sasano, Y., Sugiyama, M., Maekawa, H. and Harashima, S. (2015). Nuclear localization domains of GATA activator Gln3 are required for transcription of target genes through dephosphorylation in Saccharomyces cerevisiae. J Biosci Bioeng 120(2): 121-127.
  6. Sasano, Y., Yamagishi, K., Tanikawa, M., Nakazawa, T., Sugiyama, M., Kaneko, Y. and Harashima, S. (2015). Stabilization of mini-chromosome segregation during mitotic growth by overexpression of YCR041W and its application to chromosome engineering in Saccharomyces cerevisiae. J Biosci Bioeng 119(5): 526-531.
  7. Oda, S., Yurimoto, H., Nitta, N., Sasano, Y. and Sakai, Y. (2015). Molecular characterization of hap complex components responsible for methanol-inducible gene expression in the methylotrophic yeast Candida boidinii. Eukaryot Cell 14(3): 278-285.
  8. Sharmin, D., Sasano, Y., Sugiyama, M. and Harashima, S. (2015). Type 2C protein phosphatase Ptc6 participates in activation of the Slt2-mediated cell wall integrity pathway in Saccharomyces cerevisiae. J Biosci Bioeng 119(4): 392-398.
  9. Numamoto, M., Sasano, Y., Hirasaki, M., Sugiyama, M., Maekawa, H. and Harashima, S. (2015). The protein phosphatase Siw14 controls caffeine-induced nuclear localization and phosphorylation of Gln3 via the type 2A protein phosphatases Pph21 and Pph22 in Saccharomyces cerevisiae. J Biochem 157(1): 53-64.
  10. Nasuno, R., Aitoku, M., Manago, Y., Nishimura, A., Sasano, Y. and Takagi, H. (2014). Nitric oxide-mediated antioxidative mechanism in yeast through the activation of the transcription factor Mac1. PLoS One 9(11): e113788.
  11. Sharmin, D., Sasano, Y., Sugiyama, M. and Harashima, S. (2014). Effects of deletion of different PP2C protein phosphatase genes on stress responses in Saccharomyces cerevisiae. Yeast 31(10): 393-409.
  12. Kaboli, S., Yamakawa, T., Sunada, K., Takagaki, T., Sasano, Y., Sugiyama, M., Kaneko, Y. and Harashima, S. (2014). Genome-wide mapping of unexplored essential regions in the Saccharomyces cerevisiae genome: evidence for hidden synthetic lethal combinations in a genetic interaction network. Nucleic Acids Res 42(15): 9838-9853.
  13. Sasano, Y., Haitani, Y., Hashida, K., Oshiro, S., Shima, J. and Takagi, H. (2013). Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast. Int J Food Microbiol 165(3): 241-245.
  14. Khatun, F., Sasano, Y., Sugiyama, M., Kaneko, Y. and Harashima, S. (2013). Increase in rRNA content in a Saccharomyces cerevisiae suppressor strain from rrn10 disruptant by rDNA cluster duplication. Appl Microbiol Biotechnol 97(20): 9011-9019.
  15. Sasano, Y., Haitani, Y., Hashida, K., Ohtsu, I., Shima, J. and Takagi, H. (2012). Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough. J Biosci Bioeng 113(5): 592-595.
  16. Sasano, Y., Watanabe, D., Ukibe, K., Inai, T., Ohtsu, I., Shimoi, H. and Takagi, H. (2012). Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. J Biosci Bioeng 113(4): 451-455.
  17. Hoa, B. T., Hibi, T., Nasuno, R., Matsuo, G., Sasano, Y. and Takagi, H. (2012). Production of N-acetyl cis-4-hydroxy-L-proline by the yeast N-acetyltransferase Mpr1. J Biosci Bioeng 114(2): 160-165.
  18. Sasano, Y., Haitani, Y., Hashida, K., Ohtsu, I., Shima, J. and Takagi, H. (2012). Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast. Microb Cell Fact 11: 40.
  19. Sasano, Y., Haitani, Y., Ohtsu, I., Shima, J. and Takagi, H. (2012). Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough. Int J Food Microbiol 152(1-2): 40-43.
  20. Sasano, Y., Haitani, Y., Hashida, K., Ohtsu, I., Shima, J. and Takagi, H. (2012). Overexpression of the transcription activator Msn2 enhances the fermentation ability of industrial baker's yeast in frozen dough. Biosci Biotechnol Biochem 76(3): 624-627.
  21. Nishimura, A., Kotani, T., Sasano, Y. and Takagi, H. (2010). An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role. FEMS Yeast Res 10(6): 687-698.
  22. Sasano, Y., Takahashi, S., Shima, J. and Takagi, H. (2010). Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough. Int J Food Microbiol 138(1-2): 181-185.
  23. Sasano, Y., Yurimoto, H., Kuriyama, M. and Sakai, Y. (2010). Trm2p-dependent derepression is essential for methanol-specific gene activation in the methylotrophic yeast Candida boidinii. FEMS Yeast Res 10(5): 535-544.
  24. Iinoya, K., Kotani, T., Sasano, Y. and Takagi, H. (2009). Engineering of the yeast antioxidant enzyme Mpr1 for enhanced activity and stability. Biotechnol Bioeng 103(2): 341-352.
  25. Sasano, Y., Yurimoto, H., Yanaka, M. and Sakai, Y. (2008). Trm1p, a Zn(II)2Cys6-type transcription factor, is a master regulator of methanol-specific gene activation in the methylotrophic yeast Candida boidinii. Eukaryot Cell 7(3): 527-536.
  26. Sasano, Y., Yurimoto, H. and Sakai, Y. (2007). Gene-tagging mutagenesis in the methylotrophic yeast Candida boidinii. J Biosci Bioeng 104(1): 86-89.
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.