Frédéric Domergue Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS - Université de Bordeaux, France
2 protocols

Sollapura Vishwanath Agriculture and Agri-Food Canada
2 protocols

Camille Delude Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS – Université de Bordeaux, INRA Bordeaux Aquitaine, France
1 protocol

Isabel Molina Department of Biology, Algoma University, Canada
1 protocol

Owen Rowland
  • Biology, Carleton University, Canada
Research focus
  • Plant science
  • 3 Author merit


Ph.D. in Biochemistry, University of Toronto, Canada, 1998

Current position

Associate Professor, Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Canada
Lab Website:


  1. HadiNezhad, M., Rowland, O., and Hosseinian, F. (2015). The fatty acid profile and phenolic composition of Descurainia sophia seeds extracted by supercritical CO2. J Am Oil Chem Soc 92: 1379-1390.
  2. Vishwanath, S. J., Delude, C., Domergue, F. and Rowland, O. (2015). Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Rep 34(4): 573-586.
  3. Kosma, D. K., Murmu, J., Razeq, F. M., Santos, P., Bourgault, R., Molina, I. and Rowland, O. (2014). AtMYB41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types. Plant J 80(2): 216-229.
  4. Razeq, F. M., Kosma, D. K., Rowland, O. and Molina, I. (2014). Extracellular lipids of Camelina sativa: characterization of chloroform-extractable waxes from aerial and subterranean surfaces. Phytochemistry 106: 188-196.
  5. Monreal, C. M., Chahal, A., Rowland, O., Smith, M. and Schnitzer, M. (2014). Metabolism of nC11 fatty acid fed to Trichoderma koningii and Penicillium janthinellum II: Production of intracellular and extracellular lipids. J Environ Sci Health B 49(12): 955-965.
  6. Chahal, A., Monreal, C. M., Bissett, J., Rowland, O., Smith, M. L. and Shea Miller, S. (2014). Metabolism of n-C10:0 and n-C11:0 fatty acids by Trichoderma koningii, Penicillium janthinellum and their mixed culture: I. Biomass and CO2 production, and allocation of intracellular lipids. J Environ Sci Health B 49(12): 945-954.
  7. Pulsifer, I. P., Lowe, C., Narayaran, S. A., Busuttil, A. S., Vishwanath, S. J., Domergue, F. and Rowland, O. (2014). Acyl-lipid thioesterase1-4 from Arabidopsis thaliana form a novel family of fatty acyl-acyl carrier protein thioesterases with divergent expression patterns and substrate specificities. Plant Mol Biol 84(4-5): 549-563.
  8. Vishwanath, S. J., Kosma, D. K., Pulsifer, I. P., Scandola, S., Pascal, S., Joubes, J., Dittrich-Domergue, F., Lessire, R., Rowland, O. and Domergue, F. (2013). Suberin-associated fatty alcohols in Arabidopsis: distributions in roots and contributions to seed coat barrier properties. Plant Physiol 163(3): 1118-1132.
  9. Chacón, M. G., Fournier, A. E., Tran, F., Dittrich-Domergue, F., Pulsifer, I. P., Domergue, F. and Rowland, O. (2013). Identification of amino acids conferring chain length substrate specificities on fatty alcohol-forming reductases FAR5 and FAR8 from Arabidopsis thaliana. J Biol Chem 288(42): 30345-30355.
  10. Tran, F., Penniket, C., Patel, R. V., Provart, N. J., Laroche, A., Rowland, O. and Robert, L. S. (2013). Developmental transcriptional profiling reveals key insights into Triticeae reproductive development. Plant J 74(6): 971-988.
  11. Li-Beisson, Y., Shorrosh, B., Beisson, F., Andersson, M. X., Arondel, V., Bates, P. D., Baud, S., Bird, D., Debono, A., Durrett, T. P., Franke, R. B., Graham, I. A., Katayama, K., Kelly, A. A., Larson, T., Markham, J. E., Miquel, M., Molina, I., Nishida, I., Rowland, O., Samuels, L., Schmid, K. M., Wada, H., Welti, R., Xu, C., Zallot, R. and Ohlrogge, J. (2013). Acyl-lipid metabolism. Arabidopsis Book 11: e0161.
  12. Rowland, O. and Domergue, F. (2012). Plant fatty acyl reductases: enzymes generating fatty alcohols for protective layers with potential for industrial applications. Plant Sci 193-194: 28-38.
  13. Lü, S., Zhao, H., Des Marais, D. L., Parsons, E. P., Wen, X., Xu, X., Bangarusamy, D. K., Wang, G., Rowland, O., Juenger, T., Bressan, R. A., and Jenks, M. A. (2012). Mutation of Arabidopsis ECERIFERUM9 alters cuticle metabolism and improves tolerance to water deficit. Plant Physiology 159: 930-944.
  14. Pulsifer, I. P., Kluge, S. and Rowland, O. (2012). Arabidopsis long-chain acyl-CoA synthetase 1 (LACS1), LACS2, and LACS3 facilitate fatty acid uptake in yeast. Plant Physiol Biochem 51: 31-39.
  15. Boutin, C., Aya, K. L., Carpenter, D., Thomas, P. J. and Rowland, O. (2012). Phytotoxicity testing for herbicide regulation: shortcomings in relation to biodiversity and ecosystem services in agrarian systems. Sci Total Environ 415: 79-92.
  16. Doan, T. T., Domergue, F., Fournier, A. E., Vishwanath, S. J., Rowland, O., Moreau, P., Wood, C. C., Carlsson, A. S., Hamberg, M. and Hofvander, P. (2012). Biochemical characterization of a chloroplast localized fatty acid reductase from Arabidopsis thaliana. Biochim Biophys Acta 1821(9): 1244-1255.
  17. Domergue, F., Vishwanath, S. J., Joubès, J., Ono, J., Lee, J. A., Bourdon, M., Alhattab, R., Lowe, C., Pascal, S., Lessire, R. and Rowland, O. (2010). Three Arabidopsis fatty acyl-coenzyme A reductases, FAR1, FAR4, and FAR5, generate primary fatty alcohols associated with suberin deposition. Plant Physiol 153(4): 1539-1554.
  18. Lü, S., Song, T., Kosma, D. K., Parsons, E. P., Rowland, O. and Jenks, M. A. (2009). Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis. Plant J 59(4): 553-564.
  19. Arsovski, A. A., Villota, M. M., Rowland, O., Subramaniam, R. and Western, T. L. (2009). MUM ENHANCERS are important for seed coat mucilage production and mucilage secretory cell differentiation in Arabidopsis thaliana. J Exp Bot 60(9): 2601-2612.
  20. van den Burg, H. A., Tsitsigiannis, D. I., Rowland, O., Lo, J., Rallapalli, G., Maclean, D., Takken, F. L. and Jones, J. D. (2008). The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato. Plant Cell 20(3): 697-719.
  21. Rowland, O., Lee, R., Franke, R., Schreiber, L. and Kunst, L. (2007). The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1. FEBS Lett 581(18): 3538-3544.
  22. Rothfels, K., Rowland, O. and Segall, J. (2007). Zinc fingers 1 and 7 of yeast TFIIIA are essential for assembly of a functional transcription complex on the 5 S RNA gene. Nucleic Acids Res 35(14): 4869-4881.
  23. Rowland, O., Zheng, H., Hepworth, S. R., Lam, P., Jetter, R. and Kunst, L. (2006). CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiol 142(3): 866-877.
  24. Yang, C. W., Gonzalez-Lamothe, R., Ewan, R. A., Rowland, O., Yoshioka, H., Shenton, M., Ye, H., O'Donnell, E., Jones, J. D. and Sadanandom, A. (2006). The E3 ubiquitin ligase activity of arabidopsis PLANT U-BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense. Plant Cell 18(4): 1084-1098.
  25. Zheng, H., Rowland, O. and Kunst, L. (2005). Disruptions of the Arabidopsis Enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17(5): 1467-1481.
  26. Rowland, O., Ludwig, A. A., Merrick, C. J., Baillieul, F., Tracy, F. E., Durrant, W. E., Fritz-Laylin, L., Nekrasov, V., Sjolander, K., Yoshioka, H. and Jones, J. D. (2005). Functional analysis of Avr9/Cf-9 rapidly elicited genes identifies a protein kinase, ACIK1, that is essential for full Cf-9-dependent disease resistance in tomato. Plant Cell 17(1): 295-310.
  27. Katou, S., Yoshioka, H., Kawakita, K., Rowland, O., Jones, J. D., Mori, H. and Doke, N. (2005). Involvement of PPS3 phosphorylated by elicitor-responsive mitogen-activated protein kinases in the regulation of plant cell death. Plant Physiol 139(4): 1914-1926.
  28.  Moon, H., Chowrira, G., Rowland, O., Blacklock, B. J., Smith, M. A. and Kunst, L. (2004). A root-specific condensing enzyme from Lesquerella fendleri that elongates very-long-chain saturated fatty acids. Plant Mol Biol 56(6): 917-927.
  29. Navarro, L., Zipfel, C., Rowland, O., Keller, I., Robatzek, S., Boller, T. and Jones, J. D. (2004). The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol 135(2): 1113-1128.
  30. Yoshioka, H., Numata, N., Nakajima, K., Katou, S., Kawakita, K., Rowland, O., Jones, J. D. and Doke, N. (2003). Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15(3): 706-718.
  31. Rowland, O. and Jones, J. D. (2001). Unraveling regulatory networks in plant defense using microarrays. Genome Biol 2(1): REVIEWS1001.
  32. Durrant, W. E., Rowland, O., Piedras, P., Hammond-Kosack, K. E. and Jones, J. D. (2000). cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell 12(6): 963-977.
  33. Rowland, O. and Segall, J. (1998). A hydrophobic segment within the 81-amino-acid domain of TFIIIA from Saccharomyces cerevisiae is essential for its transcription factor activity. Mol Cell Biol 18(1): 420-432.
  34. Rowland, O. and Segall, J. (1996). Interaction of wild-type and truncated forms of transcription factor IIIA from Saccharomyces cerevisiae with the 5 S RNA gene. J Biol Chem 271(20): 12103-12110.
3 Protocols published
Root Aliphatic Suberin Analysis Using Non-extraction or Solvent-extraction Methods
Authors:  Camille Delude, Sollapura J. Vishwanath, Owen Rowland and Frédéric Domergue, date: 06/20/2017, view: 7776, Q&A: 1
Here we describe both non-extraction and solvent-extraction methods for root aliphatic suberin analysis. The non-extraction method is fast as roots are directly depolymerized using acidic transmethylation. However, suberin aliphatic components are ...
GC-MS-Based Analysis of Chloroform Extracted Suberin-Associated Root Waxes from Arabidopsis and Other Plant Species
Authors:  Dylan K. Kosma, Isabel Molina and Owen Rowland, date: 12/20/2015, view: 9511, Q&A: 0
The periderm and exodermis of taproots and tuberous taproots contain an extracellular lipid polymer, suberin, deposited in their cell walls. This polymer is intractable in organic solvents, and is co-deposited with chloroform-extractable waxes. ...
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.