Search
Coauthors
Dong Cha Department of Oriental Pharmacy, College of Pharmacy, Woosuk University, Republic of Korea, Republic of Korea,
1 protocol

Dong Yoon Department of Internal Medicine (Division of Hematology/Oncology), Brody School of Medicine at East Carolina University, United States, United States,
1 protocol

Myon-Hee Lee
  • Department of Internal Medicine (Division of Hematology/Oncology), Brody School of Medicine at East Carolina University, United States, United States,
  • 1 Author merit

Education

Ph.D, Yonsei University, South Korea, 2003

Current position

Associate Professor, Internal Medicine, Brody School of Medicine at East Carolina University, USA

Publications

  1. Yoon, D. S., Choi, Y., Cha, D. S., Zhang, P., Choi, S. M., Alfhili, M. A., Polli, J. R., Pendergrass, D., Taki, F. A., Kapalavavi, B., Pan, X., Zhang, B., Blackwell, T. K., Lee, J. W. and Lee, M. H. (2017). Triclosan Disrupts SKN-1/Nrf2-Mediated Oxidative Stress Response in C. elegans and Human Mesenchymal Stem Cells. Sci Rep 7(1): 12592.
  2. Yoon, D. S., Alfhili, M. A., Friend, K. and Lee, M. H. (2017). MPK-1/ERK regulatory network controls the number of sperm by regulating timing of sperm-oocyte switch in C. elegans germline. Biochem Biophys Res Commun 491(4): 1077-1082.
  3. Cheon, S. M., Jang, I., Lee, M. H., Kim, D. K., Jeon, H. and Cha, D. S. (2017). Sorbus alnifolia protects dopaminergic neurodegeneration in Caenorhabditis elegans. Pharm Biol 55(1): 481-486.
  4. Lee, M. H. and Yoon, D. S. (2017). A Phenotype-Based RNAi Screening for Ras-ERK/MAPK Signaling-Associated Stem Cell Regulators in C. elegans. Methods Mol Biol 1622: 207-221.
  5. Yoon, D. S., Pendergrass, D. L. and Lee, M. H. (2016). A simple and rapid method for combining fluorescent in situ RNA hybridization (FISH) and immunofluorescence in the C. elegans germline. MethodsX 3: 378-385.
  6. Lee, M. H., Mamillapalli, S. S., Keiper, B. D. and Cha, D. S. (2016). A systematic mRNA control mechanism for germline stem cell homeostasis and cell fate specification. BMB Rep 49(2): 93-98.
  7. Seo, H. W., Cheon, S. M., Lee, M. H., Kim, H. J., Jeon, H. and Cha, D. S. (2015). Catalpol Modulates Lifespan via DAF-16/FOXO and SKN-1/Nrf2 Activation in Caenorhabditis elegans. Evid Based Complement Alternat Med 2015: 524878.
  8. Polli, J. R., Dobbins, D. L., Kobet, R. A., Farwell, M. A., Zhang, B., Lee, M. H. and Pan, X. (2015). Drug-dependent behaviors and nicotinic acetylcholine receptor expressions in Caenorhabditis elegans following chronic nicotine exposure. Neurotoxicology 47: 27-36.
  9. Taki, F. A., Pan, X., Lee, M. H. and Zhang, B. (2014). Nicotine exposure and transgenerational impact: a prospective study on small regulatory microRNAs. Sci Rep 4: 7513.
  10. Kobet, R. A., Pan, X., Zhang, B., Pak, S. C., Asch, A. S. and Lee, M. H. (2014). Caenorhabditis elegans: A Model System for Anti-Cancer Drug Discovery and Therapeutic Target Identification. Biomol Ther (Seoul) 22(5): 371-383.
  11. Benson, J. A., Cummings, E. E., O'Reilly, L. P., Lee, M. H. and Pak, S. C. (2014). A high-content assay for identifying small molecules that reprogram C. elegans germ cell fate. Methods 68(3): 529-535.
  12. Lee, M. H., Cha, D. S., Mamillapalli, S. S., Kwon, Y. C. and Koo, H. S. (2014). Transgene-mediated co-suppression of DNA topoisomerase-1 gene in Caenorhabditis elegans. Int J Biochem Mol Biol 5(1): 11-20.
  13. Datla, U. S., Scovill, N. C., Brokamp, A. J., Kim, E., Asch, A. S. and Lee, M. H. (2014).  JRole of PUF-8/PUF protein in stem cell control, sperm-oocyte decision and cell fate reprogramming. Cell Physiol 229(10): 1306-1311.
  14. Kim, Y. S., Seo, H. W., Lee, M. H., Kim, D. K., Jeon, H. and Cha, D. S. (2014). Protocatechuic acid extends lifespan and increases stress resistance in Caenorhabditis elegans. Arch Pharm Res 37(2): 245-252.
  15. Snow, J. J., Lee, M. H., Verheyden, J., Kroll-Conner, P. L. and Kimble, J. (2013). C. elegans FOG-3/Tob can either promote or inhibit germline proliferation, depending on gene dosage and genetic context. Oncogene 32(21): 2614-2621.
  16. Cha, D. S., Datla, U. S., Hollis, S. E., Kimble, J. and Lee, M. H. (2012). The Ras-ERK MAPK regulatory network controls dedifferentiation in Caenorhabditis elegans germline. Biochim Biophys Acta 1823(10): 1847-1855.
  17. Cha, D. S., Hollis, S. E., Datla, U. S., Lee, S., Ryu, J., Jung, H. R., Kim, E., Kim, K., Lee, M., Li, C. and Lee, M. H. (2012). Differential subcellular localization of DNA topoisomerase-1 isoforms and their roles during Caenorhabditis elegans development. Gene Expr Patterns 12(5-6): 189-195.
  18. Whelan, J. T., Hollis, S. E., Cha, D. S., Asch, A. S. and Lee, M. H. (2012). Post-transcriptional regulation of the Ras-ERK/MAPK signaling pathway. J Cell Physiol 227(3): 1235-1241.
  19. Lee, M. H., Kim, K. W., Morgan, C. T., Morgan, D. E. and Kimble, J. (2011). Phosphorylation state of a Tob/BTG protein, FOG-3, regulates initiation and maintenance of the Caenorhabditis elegans sperm fate program. Proc Natl Acad Sci U S A 108(22): 9125-9130.
  20. Lee, M. H., Hollis, S. E., Yoo, B. H. and Nykamp, K. (2011). Caenorhabditis elegans DNA-2 helicase/endonuclease plays a vital role in maintaining genome stability, morphogenesis, and life span. Biochem Biophys Res Commun 407(3): 495-500.
  21. Morgan, C. T., Lee, M. H. and Kimble, J. (2010). Chemical reprogramming of Caenorhabditis elegans germ cell fate. Nat Chem Biol 6(2): 102-104.
  22. Nykamp, K., Lee, M. H. and Kimble, J. (2008). C. elegans La-related protein, LARP-1, localizes to germline P bodies and attenuates Ras-MAPK signaling during oogenesis. RNA 14(7): 1378-1389.
  23. Lee, M. H., Hook, B., Pan, G., Kershner, A. M., Merritt, C., Seydoux, G., Thomson, J. A., Wickens, M. and Kimble, J. (2007). Conserved regulation of MAP kinase expression by PUF RNA-binding proteins. PLoS Genet 3(12): e233.
  24. Lee, M. H., Hook, B., Lamont, L. B., Wickens, M. and Kimble, J. (2006). LIP-1 phosphatase controls the extent of germline proliferation in Caenorhabditis elegans. EMBO J 25(1): 88-96.
  25. Lee, M. H., Han, S. M., Han, J. W., Kim, Y. M., Ahnn, J. and Koo, H. S. (2003). Caenorhabditis elegans dna-2 is involved in DNA repair and is essential for germ-line development. FEBS Lett 555(2): 250-256.
  26. Jeong, Y. S., Kang, Y., Lim, K. H., Lee, M. H., Lee, J. and Koo, H. S. (2003). Deficiency of Caenorhabditis elegans RecQ5 homologue reduces life span and increases sensitivity to ionizing radiation. DNA Repair (Amst) 2(12): 1309-1319.
  27. Lee, K. H., Lee, M. H., Lee, T. H., Han, J. W., Park, Y. J., Ahnn, J., Seo, Y. S. and Koo, H. S. (2003). Dna2 requirement for normal reproduction of Caenorhabditis elegans is temperature-dependent. Mol Cells 15(1): 81-86.
  28. Bandyopadhyay, J., Lee, J., Lee, J., Lee, J. I., Yu, J. R., Jee, C., Cho, J. H., Jung, S., Lee, M. H., Zannoni, S., Singson, A., Kim, D. H., Koo, H. S. and Ahnn, J. (2002). Calcineurin, a calcium/calmodulin-dependent protein phosphatase, is involved in movement, fertility, egg laying, and growth in Caenorhabditis elegans. Mol Biol Cell 13(9): 3281-3293.
  29. Lee, M. H., Ahn, B., Choi, I. S. and Koo, H. S. (2002). The gene expression and deficiency phenotypes of Cockayne syndrome B protein in Caenorhabditis elegans. FEBS Lett 522(1-3): 47-51.
  30. Lee, J., Jee, C., Lee, J. I., Lee, M. H., Lee, M. H., Koo, H. S., Chung, C. H. and Ahnn, J. (2001). A deubiquitinating enzyme, UCH/CeUBP130, has an essential role in the formation of a functional microtubule-organizing centre (MTOC) during early cleavage in C. elegans. Genes Cells 6(10): 899-911.
  31. Lee, M. H., Park, H., Shim, G., Lee, J. and Koo, H. S. (2001). Regulation of gene expression, cellular localization, and in vivo function of Caenorhabditis elegans DNA topoisomerase I. Genes Cells 6(4): 303-312.
  32. Lee, M. H., Jang, Y. J. and Koo, H. S. (1998). Alternative splicing in the Caenorhabditis elegans DNA topoisomerase I gene. Biochim Biophys Acta 1396(2): 207-214.
1 Protocol published
Measurement of Intracellular ROS in Caenorhabditis elegans Using 2’,7’-Dichlorodihydrofluorescein Diacetate
Authors:  Dong Suk Yoon, Myon-Hee Lee and Dong Seok Cha, date: 03/20/2018, view: 1758, Q&A: 0
Reactive oxygen species (ROS) are generated during normal metabolic processes under aerobic conditions. Since ROS production initiates harmful radical chain reactions on cellular macromolecules, including lipid peroxidation, DNA mutation, and ...