Rui Martins Department of Electrical & Computer University of Macau
1 protocol

Chuxia Deng Facaulty of Health Sciences, University of Macau, Macau
3 protocols

Pui-In Mak State-Key Laboratory of Analog and Mixed-Signal VLSI/IME and FST-ECE University of Macau
1 protocol

Shuhong Yi 1 protocol

Yanwei Jia
  • Assistant Professor, Institute of Microelectronics University of Macau
Research focus
  • Microfluidics
  • Microfluidics for disease diagnostics and precision medicine
  • 1 Author merit


Ph.D., Ph.D., 2006

Lab information

Yanwei Jia Lab


3. R. Shen, Y. W. Jia*, P. I. Mak, and R. P. Martins, Clip to release on amplification (CRoA): a novel enhancer for DNA amplification on and off microfluidics, Lab on a Chip, 20, 1928-1938, 2020 (Back cover). 4. Q. M. Chen, X. L. Tong, Y. J. Zhu, C. C. Tsoi, Y. W. Jia, Z. H. Li, and X. M. Zhang, Aberration-free aspherical tunable liquid lenses by regulating local curvatures, Lab on a Chip, 20, 995-1001, 2020. 5. J. Zhai, H. R. Li, A. H. H. Wong, C. Dong, S. H. Yi, Y. W. Jia*, P. I. Mak, C. X. Deng and R. P. Martins, A Digital Microfluidic System with 3D Microstructures for Single-Cell Culture, Microsystems and Nanoengineering, 6, 6, 2020. 6. Y. J. Zhu, Q. M. Chen, L. Y. Shao, Y. W. Jia, and X. M. Zhang, Microfluiidc immobilized enzyme reactors for continuous biocatalysis, Reaction Chemistry and Engineering, 5, 9-32, 2020 (Front cover). 7. Y. Zhu, Z. Huang, Q. Chen, Q. Wu, X. Huang, P. So, L. Shao, Z. Yao, Y. W. Jia, Z. Li, W. Yu, Y. Yang, A. Jian, S. Sang, W. Zhang, X. M. Zhang, Continuous artificial synthesis of glucose precursor using enzyme-immobilized microfluidic reactors, Nature Communications, 10, 4049, 2019. 8. J. Zhai, S. H. Yi, Y. W. Jia*, P. I. Mak, R. P. Martins, Cell-based drug screening on microfluidics, Trends in Analytical Chemistry, 117, 231-241, 2019. 9. M. Z. Li, C. Dong, M. K. Law*, Y. W. Jia*, P. I. Mak and R. P. Martins, Hydrodynamic-flow-enhanced rapid mixer for isothermal DNA hybridization kinetics analysis on digital microfluidics platform, Sensors and Actuators B, 287, 390-397, 2019. 10. L. Wan, J. Gao, T. L. chen, C. Dong, H. R. Li, Y. Z. Wen, Z. R. Lun, Y. W. Jia*, P. I. Mak, R. P. Martins, LampPort: a handheld digital microfluidic device for loop-mediated isothermal amplification (LAMP), Biomedical Microdevices, 21:9, 2019. 11. J. Zhai, Y. W. Jia, L. N. Zhao, Q. Yuan, F. P. Gao, X. C. Zhang, P. J. Cai, L. Gao, J. J. Guo, S. H. Yi, Z. F. Chai, Y. L. Zhao and X. Y. Gao, Turning on/off the anti-tumor effect of the Au cluster via atomically controlling its molecular size, ACS Nano, 12(5), 4378-4386, 2018. 12. L. Wan, T. L. Chen, J. Gao, C. Dong, A. H. H. Wong, Y. W. Jia*, P. I. Mak, C. X. Deng and R. Martins, A digital microfluidic system for loop-mediated isothermal amplification and sequence specific pathogen detection, Scientific Reports, 7, 14586, 2017. 13. A. H. H. Wong, H. R. Li, Y. W. Jia, P. I. Mak, R. P. Martins, Y. Liu, C. M. Vong, H. C. Won, P. K. Wong, H. T. Wang, H. Sun, C. X. Deng, Drug screening of cancer cell lines and human primary tumors using droplet microfluidics, Scientific Reports, 7, 9109, 2017. 14. C. Xu, Y. L. Wang, C. Y. Zhang, Y. W. Jia, Y. J. Luo and X. Y. Gao, AuGd integrated nanoprobes for optical/MRI/CT triple-modal in vivo tumor imaging, Nanoscale, 9, 4620-4628, 2017. 15. C. Dong, Y. W. Jia*, J. Gao, T. L. Chen, P. I. Mak, M. I. Vai and R. P. Martins, A 3D microblade structure for precise and parallel droplet splitting on digital microfluidic chips, Lab on a Chip, 17, 896-904, 2017. 16. T. L. Chen, Y. W. Jia, C. Dong, J. Gao, P. I. Mak, and R. P. Martins, Sub-7-second genotyping of single-nucleotide polymorphism by high-resolution melting curve analysis on a thermal digital microfluidic device, Lab on a Chip, 16, 743-752, 2016. 17. C. Dong, T. L. Chen, J. Gao. Y. W. Jia. P. I. Mak, M. I. Vai and R. P. Martins, On the droplet velocity and electrode lifetime of digital microfluidics: voltage actuation techniques and comparison, Microfluidics and Nanofluidics, 18, 673-683, 2015. 18. Y. W. Jia, J. A. Sanchez, L. J. Wangh, Kinetic Hairpin Oligonucleotide Blockers for Selective Amplification of Rare Mutations, Scientific Reports, 4, 5921, 2014. 19. Y. W. Jia, P. I. Mak, C. Massey, R. P. Martins and L. J. Wangh, Construction of a Microfluidic Chip for LATE-PCR Amplification and Detection of Single-Stranded DNA using Dried-Down Reagents, Lab on a Chip, 13, 4635-4641, 2013 20. Y. W. Jia, A. Osborne, J. E. Rice and L. J. Wangh, Dilute-‘N’-Go Dideoxy Sequencing of All DNA Strands Generated in Multiplexed LATE-PCR Assays, Nucleic Acids Research, 38 (11), e119, 2010. 21. Y. W. Jia, C. Hartshorn, O. Hartung and L. J. Wangh, Heat Shock Memory in Preimplantation Mouse Embryos, Fertility and Sterility, 93 (8), 2760-2763, 2010. 22. H. Boukellal, S. Selimovic, Y. W. Jia, G. Cristobal and S. Fraden, Simple, Robust Storage of Drops and Fluids in a Microfluidic Device, Lab on a Chip, 9, 331-338, 2009. 23. S. Selimovic, Y. W. Jia and S. Fraden, Measuring the Nucleation Rate of Lysozyme Using Microfluidics, Crystal Growth & Design, 9, 1808-1810, 2009. 24. J.-uk Shim, G. Cristobal, D. Link, T. Thorsen, Y. W. Jia, K. Piatelli and S. Fraden, Control and Measurement of the Phase Behavior of Aqueous Solutions Using Microfluidics, Journal of the American Chemical Society, 129, 8825-8835, 2007. (Highlighted by Lab on a Chip 7, 1091-1093, 2007; SCIENCE 317, 18, 2007) 25. Y. W. Jia and X. Y. Liu, From Surface Self-assembly to Crystallization: Prediction of Protein Crystallization Conditions, Journal of Physical Chemistry B, 110, 6949-6955, 2006. 26. Y. W. Jia, J. Narayanan, X. Y. Liu and Y. Liu, Investigation of the Mechanism of Crystallization of Soluble Protein in the Presence of Nonionic Surfactant, Biophysical Journal 89, 4245-4251, 2005. 27. Y. W. Jia and X. Y. Liu, Prediction of Protein Crystallization Based on Interfacial and Diffusion Kinetics, Applied Physics Letters 87(10), 103902, 2005. 28. Y. W. Jia and X. Y. Liu, Self-assembly of Protein at Aqueous Solution Surface in Correlation to Protein Crystallization, Applied Physics Letters 86(2), 023903, 2005.
1 Protocol published
A Novel and Robust Single-cell Trapping Method on Digital Microfluidics
Due to cell heterogeneity, the differences among individual cells are averaged out in bulk analysis methods, especially in the analysis of primary tumor biopsy samples from patients. To deeply understand the cell-to-cell variation in a primary ...
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.