Daisuke Mizuguchi Sensory and Motor Systems Research Group, Korea Brain Research Institute, Daegu
1 protocol

Yunbok Kim Sensory & Motor Systems Research Group, Korea Brain Research Institute , 2019-2020
1 protocol

Satoshi Kojima
  • Principal Investigator, Sensory and Motor Systems Research Group, Korea Brain Research Institute, 2015-2020
Research focus
  • Neuroscience
  • 1 Author merit

Education

Ph.D. in Neuroscience, Hokkaido University, Japan, 2000

Publications

1. Nakai, J., Totani, Y., Kojima, S., Sakakibara, M., and Ito, E. (2020) Features of behavioral changes underlying conditioned taste aversion in the pond snail Lymnaea stagnalis. Invertebrate Neuroscience 20(2), 8.
2. Sánchez-Valpuesta, M., Suzuki, Y., Shibata, Y., Toji, N., Ji, Y., Afrin, N., Asogwa, C.N., Kojima, I., Mizuguchi, D., Kojima, S., Okanoya, K., Okado, H., Kobayashi, K., and Wada, K. (2019) Corticobasal Ganglia Projecting Neurons Are Required for Juvenile Vocal Learning but Not for Adult Vocal Plasticity in Songbirds. Proc. Natl. Acad. Sci. USA 116, 22833.
3. Daliparthi, V.K., Tachibana, R.O., Cooper, B.G., Hahnloser, R.H.R., Kojima, S., Sober, S.J., and Roberts, T.F. (2019). Transitioning between preparatory and precisely sequenced neuronal activity in production of a skilled behavior. eLife 8, e43732.
4. Rao, R., Kojima, S., and Rajan, R. (2019). Sensory feedback independent pre-song vocalizations correlate with time to song initiation. Journal of Experimental Biology 2019, 222.
5. Kojima, S.*, Kao, M.H. Doupe, A.J., and Brainard, M.S. (2018). The avian basal ganglia are a source of rapid behavioral variation that enables vocal motor exploration. The Journal of Neuroscience 24, 2915-17, *Corresponding author
6. Kojima, S., Sunada, H., Mita, K., Sakakibara, M., Lukowiak, K., and Ito, E. (2015). Function of insulin in snail brain in associative learning. Journal of Comparative Physiology A 201, 969-981, Review
7. Kojima, S., Kao, M.H. and Doupe, A.J. (2013). Task-related ‘cortical’ bursting depends critically on basal ganglia input and is linked to vocal plasticity. Proc. Natl. Acad. Sci. USA 110, 4756-4761.
8. Ito, E., Kojima, S., Lukowiak, K. and Sakakibara, M. (2013). From likes to dislikes: conditioned taste aversion in the pond snail Lymnaea stagnalis. Canadian Journal of Zoology 91, 405-412, Review
9. Kojima, S. (2012). Neural mechanisms of birdsong learning: basal ganglia circuits and reinforcement learning model. Comparative Physiology and Biochemistry 29, 58-69, Review
10. Kojima, S., and Doupe, A.J. (2011). Social performance reveals unexpected vocal competency in young songbirds. Proc. Natl. Acad. Sci. USA 108, 1687-1692.
11. Kojima, S., and Doupe, A.J. (2009). Activity propagation in an avian basal ganglia-thalamocortical circuit essential for vocal learning. The Journal of Neuroscience 29, 4782-4793.
12. Kojima, S., and Doupe, A.J. (2008). Neural encoding of auditory temporal context in a songbird basal ganglia nucleus, and its independence of birds' song experience. European Journal of Neuroscience 27, 1231-1244.
13. Kojima, S., and Doupe, A.J. (2007). Song selectivity in the pallial-basal ganglia song circuit of zebra finches raised without tutor song exposure. Journal of Neurophysiology 98, 2099-2109.
14. Kinoshita, M., Fukaya, M., Tojima, T., Kojima, S., Ando, H., Watanabe, M., Urano, A., and Ito, E. (2005). Retinotectal transmission in the optic tectum of rainbow trout. Journal of Comparative Neurology 484, 249-259.
15. Kojima, S., and Aoki, K. (2003). Intrinsic and synaptic properties of the dorsomedial nucleus of the intercollicular complex, an area known to be involved in distance call production in Bengalese finches. Brain Research 966, 84-94.
16. Kinoshita, M., Ueda, R., Kojima, S., Sato, K., Watanabe, M., Urano, A., and Ito, E. (2002). Multiple-site optical recording for characterization of functional synaptic organization of the optic tectum of rainbow trout. European Journal of Neuroscience 16, 868-876.
17. Kojima, S., Hosono, T., Fujito, Y., and Ito, E. (2001). Optical detection of neuromodulatory effects of conditioned taste aversion in the pond snail Lymnaea stagnalis. Journal of Neurobiology 49, 118-128.
18. Kojima, S., Ogawa, H., Kouuchi, T., Nidaira, T., Hosono, T., and Ito, E. (2000). Neuron-independent Ca2+ signaling in glial cells of snail's brain. Neuroscience 100, 893-900.
19. Hatakeyama, D., Ito, I., Kojima, S., Fujito, Y., and Ito, E. (2000). Complement receptor 3-like immunoreactivity in the light green cells and the canopy cells of the pond snail, Lymnaea stagnalis. Brain Research 865, 102-106.
20. Sadamoto, H., Yamanaka, M., Hatakeyama, D., Nagayama, S., Kojima, S., Yamashita, M., and Ito, E. (2000). Developmental study of anatomical substrate for conditioned taste aversion in Lymnaea stagnalis. Zoological Science 17, 141-148.
21. Kojima, S., Nakamura, T., Nidaira, T., Nakamura, K., Ooashi, N., Ito, E., Watase, K., Tanaka, K., Wada, K., Kudo, Y., et al. (1999). Optical detection of synaptically induced glutamate transport in hippocampal slices. The Journal of Neuroscience 19, 2580-2588.
22. Nakamura, H., Ito, I., Kojima, S., Fujito, Y., Suzuki, H., and Ito, E. (1999a). Histological characterization of lip and tentacle nerves in Lymnaea stagnalis. Neuroscience Research 33, 127-136.
23. Nakamura, H., Kobayashi, S., Kojima, S., Urano, A., and Ito, E. (1999b). PKA-dependent regulation of synaptic enhancement between buccal motor neuron and its regulatory interneuron in Lymnaea stagnalis. Zoological Science 16, 387-394.
24. Nakamura, H., Kojima, S., Kobayashi, S., Ito, I., Fujito, Y., Suzuki, H., and Ito, E. (1999c). Physiological characterization of lip and tentacle nerves in Lymnaea stagnalis. Neuroscience Research 33, 291-298.
25. Yamanaka, M., Sadamoto, H., Hatakeyama, D., Nakamura, H., Kojima, S., Kimura, T., Yamashita, M., Urano, A., and Ito, E. (1999). Developmental changes in conditioned taste aversion in Lymnaea stagnalis. Zoological Science 16, 9-16.
26. Kojima, S., Kobayashi, S., Yamanaka, M., Sadamoto, H., Nakamura, H., Fujito, Y., Kawai, R., Sakakibara, M., and Ito, E. (1998). Sensory preconditioning for feeding response in the pond snail, Lymnaea stagnalis. Brain Research 808, 113-115.
27. Ito, E., Kobayashi, S., Kojima, S., Sadamoto, H., and Hatakeyama, D. (1999). Associative learning in the pond snail, Lymnaea stagnalis. Zoological Science 16, 711-723, Review
28. Sadamoto, H., Hatakeyama, D., Kojima, S., Fujito, Y., and Ito, E. (1998). Histochemical study on the relation between NO-generative neurons and central circuitry for feeding in the pond snail, Lymnaea stagnalis. Neuroscience Research 32, 57-63.
29. Kobayashi, S., Kojima, S., Yamanaka, M., Sadamoto, H., Nakamura, H., Fujito, Y., Kwai, R., Skakibara, M., and Ito, E. (1998). Operant conditioning of escape behavior in the pond snail, Lymnaea stagnalis. Zoological Science 15, 683-690.
30. Kojima, S., Nanakamura, H., Nagayama, S., Fujito, Y., and Ito, E. (1997). Enhancement of an inhibitory input to the feeding central pattern generator in Lymnaea stagnalis during conditioned taste-aversion learning. Neuroscience Letters 230, 179-182.
31. Kojima, S., Yamanaka, M., Fujito, Y., and Ito, E. (1996). Differential neuroethological effects of aversive and appetitive reinforcing stimuli on associative learning in Lymnaea stagnalis. Zoological Science 13, 803-812.
1 Protocol published
Long-term Devocalization of Zebra Finches
Authors:  Yunbok Kim, Daisuke Mizuguchi and Satoshi Kojima, date: 09/20/2020, view: 330, Q&A: 0
Songbirds, such as the zebra finch, are a popular animal model for studying the neural basis of vocal and complex skill learning. Adult male zebra finches produce courtship song toward females (referred to as ‘directed song’) and recording and ...
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.