Melissa M. Harrison
  • Associate Professor, Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health
Research focus
  • Developmental biology
  • 1 Author merit

Education

PhD, MIT, USA, 2006

Lab information

https://harrisonlab.bmolchem.wisc.edu

Publications

Since 2011:

· Harrison, M.M. *, Li, X.Y.*, Kaplan, T. *, Botchan, M.R., and M.B. Eisen. (2011) Zelda Binding in the Early Drosophila melanogaster Embryo Marks Regions Subsequently Activated at the Maternal-to-Zygotic Transition. PLoS Genet. 7:e1002266.

· Gratz, S.J., Cummings, A.M., Nguyen, J.N., Hamm, D.C., Donohue, L.K., Harrison, M.M.*, Wildonger, J.* and K.M. O’Connor-Giles*. (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9-nuclease. Genetics. 194:1029-1035.

· Gratz, S.J., Wildonger, J., Harrison, M.M., and K.M. O’Connor-Giles. (2013) CRISPR/Cas9-mediated genome engineering and the promise of designer flies on demand. Fly. 7:249-255.

· Harrison, M.M., Jenkins, B.V., O’Connor-Giles, K.M. and J. WIldonger. (2014) A CRISPR view of development. Genes Dev. 28: 1859-1872.

· Li, X.Y., Harrison, M.M., Villalta, J.E., Kaplan, T. and M.B. Eisen. (2014) Establishment of regions of genomic activity during the Drosophila maternal to zygotic transition. eLife.3: doi 10.7554/eLife.03737.

· Akbari, O.S., Bellen, H.J., Bier, E., Bullock, S.L., Burt, A., Church, G.M., Cook, K.R., Duchek, P., Edwards, O.R., Esvelt, K.M., Gantz, V.M., Golic, K.G., Gratz, S.J., Harrison, M.M., Hayes, K.R., James, A.A., Kaufman, T.C., Knoblich, J., Malik, H.S., Matthews, K.A., O'Connor-Giles, K.M., Parks, A.L., Perrimon, N., Port, F., Russell, S., Ueda, R., Wildonger, J. (2015) BIOSAFETY. Safeguarding gene drive experiments in the laboratory. Science 349: 927-929.

· Hamm, D.C., Bondra, E.R., M.M. Harrison. (2015) Transcirptional activation is a conserved feature of the early embryonic factor Zelda that requires a cluster of four zinc fingers for DNA binding and a low-complexity activation domain. J Biol Chem. 290: 3508-3518.

· Gratz, S.J., Harrison, M.M., Wildonger, J. and K.M. O’Connor-Giles. (2015) Precise Genome Editing of Drosophila with CRISPR RNA-guided Cas9. Methods in Molecular Biology CRISPR:Methods and Protocols. 1311: 335-348.

· Gratz, S.J., Rubinstein, C.D., Harrison, M.M., Wildonger, J. and K.M. O’Connor-Giles. (2015) CRISPR-Cas9 Genome Editing in Drosophila. Curr Protoc Mol Biol. 111: 31.2.1-31.2.20.

· Harrison, M.M. and M.B. Eisen. (2015) Transcriptional activaiton of the zygotic genome in Drosophila. Curr Top Dev Biol. 113: 85-112.

· Schulz, K.N., Bondra, E.R., Villalta, J.E., Lieb, J.D., Kaplan, T., McKay, D.J., and M.M. Harrison. (2015) Zelda is differentially required for chromatin acccessibility, transcription-factor biding and gene expression in the early Drosophila embryo. Genome Res 25: 1715-1726.

· Nevil, M., Bondra, E.R., Schulz, K.N., Kaplay, T., and M.M. Harrison. (2017) Genome-wide analysis of the conserved transcription factor Grainy head reveals stable binding to target genes during development. Genetics 205: 605-620.

· Janssens, D.H., Hamm, D.C., Xiao, Q., Anhezini De Araujo, L., Siller, K.H., Siegrist, S.E., Harrison, M.M., and C.Y. Lee. (2017) A novel Hdac1/Rpd3-poised circuit balances continual self-renewal and rapid restriction of developmental potential during asymmetric stem cell division. Dev Cell 40: 367-380.

· Hamm, D.C., Larson, E.D., Nevil, M.N., Marshall, K., Bondra, E.R., and M.M. Harrison. (2017) A conserved maternal-specific repressive domain in Zelda revealed by Cas9-mediated mutagenesis in Drosophila melanogaster. PLoS Genet 13:e1007120.

· Bier, E., Harrison, M.M., O’Connor-Giles, K.M., and J. Wildonger. (2018) Advances in Engineering the Fly Genome with the CRISPR-Cas System. Genetics 208: 1-18.

· Schulz, K.N. and M.M. Harrison. (2018) Zygotic genome activation: The dawn of independence. In M. K. Skinner (Ed.) Encyclopedia of Reproduction vol 3: 320-325.

· Hamm, D.C. and M.M. Harrison. (2018) Regulatory principles governing the maternal-to-zygotic transition: insights from Drosophila melanogaster. Open Biol. 8: 180183.

· Dufourt, J., Trullo, A., Hunter, J., Fernandez, C., Lazaro, J., Dejean, M., Morales, L., Nait-Amer, S., Schulz, K.N., Harrison, M.M., Favard, C., Radulescu, O., Lagha, M. (2018) Temporal control of gene expression by the pioneer factor Zelda through transient interactions in hubs. Nat. Commun. 9: 5194.

· Mir, M., Stadler, M.R., Ortiz, S., Harrison, M.M., Darzacq, X., and M.B. Eisen. (2018) Dynamic hubs of the pioneer factor Zelda organiz pattering facgtor binding but are not stably associated with sites of active transcription. eLife. 7:e40497.

· Schulz, K.N. and M.M. Harrison. (2019) Mechanisms regulating zygotic genome activation. Nat. Rev. Genet. 20:221-234.

· McDaniel, S.L., Gibson, T.J., Schulz, K.N., Fernandez Garcia, M., Nevil, M.N., Jain, S.U., Lewis, P.W., Zaret, K.S., and M.M. Harrison. (2019) Continued activity of the pioneer factor Zelda is required to drive zygotic genome activation. Mol Cell. 74:185-195.

· Reese, R.M., Harrison, M.M., and E.T. Alarid. (2019) Grainyhead-like protein 2: The emerging role in hormone-dependent cancers and epigenetics. Endocrinology doi.org/10.1210/en.2019-00213.
1 Protocol published
Optogenetic Inactivation of Transcription Factors in the Early Embryo of Drosophila
Authors:  Stephen L. McDaniel and Melissa M. Harrison, date: 07/05/2019, view: 265, Q&A: 0
The early embryo of Drosophila melanogaster exists as a rapidly dividing syncytium of nuclei that are transcriptionally silent. Maternally deposited factors are required to awaken the genome and assist in the transition from maternal to ...
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.