Toru Hisabori Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Japan
1 protocol

Keisuke Yoshida
  • Assist. Prof., Institute of Innovative Research, Tokyo Institute of Technology, Japan
Research focus
  • Plant science
  • 1 Author merit


Dr. of Science, Osaka University, Japan, 2008


· Yoshida K., Hisabori T. (2018) Determining the rate-limiting step for light-responsive redox regulation in chloroplasts. Antioxidants, 7: 153.
· Yoshida K., Hara A., Sugiura K., Fukaya Y., Hisabori T. (2018) Thioredoxin-like2/2-Cys peroxiredoxin redox cascade supports oxidative thiol modulation in chloroplasts. Proc. Natl. Acad. Sci. U.S.A., 115: E8296-E8304.
· Hashida S-N., Miyagi A., Nishiyama M., Yoshida K., Hisabori T., Kawai-Yamada M. (2018) Ferredoxin/thioredoxin system plays an important role in the chloroplastic NADP status of Arabidopsis. Plant J., 95: 947-960.
· Mihara S., Wakao H., Yoshida K., Higo A., Sugiura K., Tsuchiya A., Nomata J., Wakabayashi K-I., Hisabori T. (2018) Thioredoxin regulates G6PDH activity by changing redox states of OpcA in the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Biochem. J., 475: 1091-1105.
· Yoshida K., Hisabori T. (2017) Distinct electron transfer from ferredoxin-thioredoxin reductase to multiple thioredoxin isoforms in chloroplasts. Biochem. J., 474: 1347-1360.
· Seta A., Tabara M., Nishibori Y., Hiraguri A., Ohkama-Ohtsu N., Yokoyama T., Hara S., Yoshida K., Hisabori T., Fukudome A., Koiwa H., Moriyama H., Takahashi N., Fukuhara T. (2017) Post-translational regulation of the dicing activities of Arabidopsis DICER-LIKE 3 and 4 by inorganic phosphate and the redox state. Plant Cell Physiol., 58: 485-495.
· Mihara S., Yoshida K., Higo A., Hisabori T. (2017) Functional significance of NADPH-thioredoxin reductase C in the antioxidant defense system of cyanobacterium Anabaena sp. PCC 7120. Plant Cell Physiol., 58: 86-94.
· Yoshida K., Hisabori T. (2016a) Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability. Proc. Natl. Acad. Sci. U.S.A., 113: E3967-E3976.
· Yoshida K., Hisabori T. (2016b) Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana. Biochim. Biophys. Acta, 1857: 810-818.
· Yutthanasirikul R., Nagano T., Jimbo H., Hihara Y., Kanamori T., Ueda T., Haruyama T., Konno H., Yoshida K., Hisabori T., Nishiyama Y. (2016) Oxidation of a cysteine residue in elongation factor EF-Tu reversibly inhibits translation in the cyanobacterium Synechocystis sp. PCC 6803. J. Biol. Chem., 291: 5860-5870.
· Yoshida K., Hara S., Hisabori T. (2015) Thioredoxin selectivity for thiol-based redox regulation of target proteins in chloroplasts. J. Biol. Chem., 290: 14278-14288.
· Yoshida K., Hisabori T. (2014) Mitochondrial isocitrate dehydrogenase is inactivated upon oxidation and reactivated by thioredoxin-dependent reduction in Arabidopsis. Front. Environ. Sci., 2: 38.
· Yoshida K., Matsuoka Y., Hara S., Konno H., Hisabori T. (2014) Distinct redox behaviors of chloroplast thiol enzymes and their relationships with photosynthetic electron transport in Arabidopsis thaliana. Plant Cell Physiol., 55: 1415-1425.
· Yoshida K., Noguchi K., Motohashi K., Hisabori T. (2013) Systematic exploration of thioredoxin target proteins in plant mitochondria. Plant Cell Physiol., 54: 875-892.
· Yoshida K., Watanabe C. K., Hachiya T., Tholen D., Shibata M., Terashima I., Noguchi K. (2011a) Distinct responses of the mitochondrial respiratory chain to long- and short-term high-light environments in Arabidopsis thaliana. Plant Cell Environ., 34: 618-628.
· Yoshida K., Terashima I., Noguchi K. (2011b) How and why does the mitochondrial respiratory chain respond to light? Plant Signal. Behav., 6: 864-866.
· Yoshida K., Watanabe C. K., Terashima I., Noguchi K. (2011c) Physiological impact of mitochondrial alternative oxidase on photosynthesis and growth in Arabidopsis thaliana. Plant Cell Environ., 34: 1890-1899.
· Yoshida K., Shibata M., Terashima I., Noguchi K. (2010) Simultaneous determination of in vivo plastoquinone and ubiquinone redox states by HPLC-based analysis. Plant Cell Physiol., 51: 836-841.
· Yoshida K., Noguchi K. (2010) Interaction between chloroplasts and mitochondria: activity, function, and regulation of the mitochondrial respiratory system during photosynthesis. In “Plant Mitochondria (Advances in Plant Biology 1)” (Kempken F. ed), Springer, pp. 383-409.
· Yoshida K., Noguchi K. (2009) Differential gene expression profiles of the mitochondrial respiratory components in illuminated Arabidopsis leaves. Plant Cell Physiol., 50: 1449-1462.
· Yoshida K., Watanabe C., Kato Y., Sakamoto W., Noguchi K. (2008) Influence of chloroplastic photo-oxidative stress on mitochondrial alternative oxidase capacity and respiratory properties: a case study with Arabidopsis yellow variegated 2. Plant Cell Physiol., 49: 592-603.
· Noguchi K., Yoshida K. (2008) Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion, 8: 87-99.
· Yoshida K., Terashima I., Noguchi K. (2007) Up-regulation of mitochondrial alternative oxidase concomitant with chloroplast over-reduction by excess light. Plant Cell Physiol., 48: 606-614.
· Yoshida K., Terashima I., Noguchi K. (2006) Distinct roles of the cytochrome pathway and alternative oxidase in leaf photosynthesis. Plant Cell Physiol., 47: 22-31.
1 Protocol published
Simple Method to Determine Protein Redox State in Arabidopsis thaliana
Authors:  Keisuke Yoshida and Toru Hisabori, date: 06/05/2019, view: 417, Q&A: 0
Thiol-based redox regulation is a posttranslational protein modification that plays a key role in many biological aspects. To understand its regulatory functions, we need a method to directly assess protein redox state in vivo. Here we ...
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.