Helen Healy Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Australia, Australia,
1 protocol

Ray Wilkinson Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Australi, Australi,
1 protocol

Kimberly Muczynski Division of Nephrology, University of Washington, Seattle, USA, USA,
1 protocol

Becker Law Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Australia, Australia,
1 protocol

Andrew J. Kassianos
  • Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Australia, Australia,
  • 1 Author merit

Education

PhD, University of Queensland, Australia, 2010

Current position

Senior Scientist, Conjoint Kidney Research Laboratory, Pathology Queensland , Australia

Publications

  1. Kildey, K., Lawm, B., Muczynski, K., Wilkinson, R., Healy, H., Kassianos, A. (2018). Identification of leukocyte subpopulations in human kidneys by flow cytometry. (Unpublished). 

  2. Law, B., Wilkinson, R., Wang, X., Kildey, K., Lindner, M., Beagley, K., Healy, H*., Kassianos A*. (2018). Effector γδ T cells in human renal fibrosis and chronic kidney disease. Nephrology Dialysis Transplantation. (Unpublished). 

  3. Wilson, G., Franca-Gois, P., Zhang, A., Wang, X., Law, B., Kassianos, A., Healy, H. (2018). The role of oxidative stress and inflammation in acute oxalate nephropathy associated with ethylene glycol intoxication. (Unpublished). 

  4. Law, B. M. P., Wilkinson, R., Wang, X., Kildey, K., Lindner, M., Rist, M. J., Beagley, K., Healy, H. and Kassianos, A. J. (2017). Interferon-gamma production by tubulointerstitial human CD56(bright) natural killer cells contributes to renal fibrosis and chronic kidney disease progression. Kidney Int 92(1): 79-88. 

  5. Wang, X., Wilkinson, R., Kildey, K., Potriquet, J., Mulvenna, J., Lobb, R. J., Moller, A., Cloonan, N., Mukhopadhyay, P., Kassianos, A. J. and Healy, H. (2017). Unique molecular profile of exosomes derived from primary human proximal tubular epithelial cells under diseased conditions. J Extracell Vesicles 6(1): 1314073. 

  6. Chiang, M. C., Tullett, K. M., Lee, Y. S., Idris, A., Ding, Y., McDonald, K. J., Kassianos, A., Leal Rojas, I. M., Jeet, V., Lahoud, M. H. and Radford, K. J. (2016). Differential uptake and cross-presentation of soluble and necrotic cell antigen by human DC subsets. Eur J Immunol 46(2): 329-339. 

  7. Kassianos, A. J., Wang, X., Sampangi, S., Afrin, S., Wilkinson, R. and Healy, H. (2015). Fractalkine-CX3CR1-dependent recruitment and retention of human CD1c+ myeloid dendritic cells by in vitro-activated proximal tubular epithelial cells. Kidney Int 87(6): 1153-1163. 

  8. Sampangi, S., Kassianos, A. J., Wang, X., Beagley, K. W., Klein, T., Afrin, S., Healy, H. and Wilkinson, R. (2015). The Mechanisms of Human Renal Epithelial Cell Modulation of Autologous Dendritic Cell Phenotype and Function. PLoS One 10(7): e0134688. 

  9. Sampangi, S., Wang, X., Beagley, K. W., Klein, T., Afrin, S., Healy, H., Wilkinson, R. and Kassianos, A. J. (2015). Human proximal tubule epithelial cells modulate autologous B-cell function. Nephrol Dial Transplant 30(10): 1674-1683. 

  10. Wilkinson, R., Wang, X., Kassianos, A. J., Zuryn, S., Roper, K. E., Osborne, A., Sampangi, S., Francis, L., Raghunath, V. and Healy, H. (2014). Laser capture microdissection and multiplex-tandem PCR analysis of proximal tubular epithelial cell signaling in human kidney disease. PLoS One 9(1): e87345. 

  11. Kassianos, A. J., Sampangi, S., Wang, X., Roper, K. E., Beagley, K., Healy, H. and Wilkinson, R. (2013). Human proximal tubule epithelial cells modulate autologous dendritic cell function. Nephrol Dial Transplant 28(2): 303-312.

  12. Kassianos, A. J., Wang, X., Sampangi, S., Muczynski, K., Healy, H. and Wilkinson, R. (2013). Increased tubulointerstitial recruitment of human CD141(hi) CLEC9A(+) and CD1c(+) myeloid dendritic cell subsets in renal fibrosis and chronic kidney disease. Am J Physiol Renal Physiol 305(10): F1391-1401. 

  13. Mittal, D., Kassianos, A. J., Tran, L. S., Bergot, A. S., Gosmann, C., Hofmann, J., Blumenthal, A., Leggatt, G. R. and Frazer, I. H. (2013). Indoleamine 2,3-dioxygenase activity contributes to local immune suppression in the skin expressing human papillomavirus oncoprotein e7. J Invest Dermatol 133(12): 2686-2694.

  14. Kassianos, A. J., Hardy, M. Y., Ju, X., Vijayan, D., Ding, Y., Vulink, A. J., McDonald, K. J., Jongbloed, S. L., Wadley, R. B., Wells, C., Hart, D. N. and Radford, K. J. (2012). Human CD1c (BDCA-1)+ myeloid dendritic cells secrete IL-10 and display an immuno-regulatory phenotype and function in response to Escherichia coli. Eur J Immunol 42(6): 1512-1522. 

  15. McDonald K, K. A., Jeet V, Ju X, Ding Y, Hart D, Radford K (2012). Cross-presentation by human dendritic subsets depends on the type of antigen and exogenous stimuli. Molecular Immunology 51(1): 28. 

  16. Bergot, A. S., Kassianos, A., Frazer, I. H. and Mittal, D. (2011). New Approaches to Immunotherapy for HPV Associated Cancers. Cancers (Basel) 3(3): 3461-3495. 

  17. Cullup, H., Hsu, A. K., Kassianos, A. J., McDonald, K., Radford, K. J. and Rice, A. M. (2011). CD34+ cord blood DC-induced antitumor lymphoid cells have efficacy in a murine xenograft model of human ALL. J Immunother 34(4): 362-371. 

  18. Jongbloed, S. L., Kassianos, A. J., McDonald, K. J., Clark, G. J., Ju, X., Angel, C. E., Chen, C. J., Dunbar, P. R., Wadley, R. B., Jeet, V., Vulink, A. J., Hart, D. N. and Radford, K. J. (2010). Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 207(6): 1247-1260. 

  19. Kassianos, A. J., Jongbloed, S. L., Hart, D. N. and Radford, K. J. (2010). Isolation of human blood DC subtypes. Methods Mol Biol 595: 45-54. 

  20. Hardy, M. Y., Kassianos, A. J., Vulink, A., Wilkinson, R., Jongbloed, S. L., Hart, D. N. and Radford, K. J. (2009). NK cells enhance the induction of CTL responses by IL-15 monocyte-derived dendritic cells. Immunol Cell Biol 87(8): 606-614. 

  21. Radford, K. J., Turtle, C. J., Kassianos, A. J. and Hart, D. N. (2006). CD11c+ blood dendritic cells induce antigen-specific cytotoxic T lymphocytes with similar efficiency compared to monocyte-derived dendritic cells despite higher levels of MHC class I expression. J Immunother 29(6): 596-605. 

  22. Wilkinson, R., Kassianos, A. J., Swindle, P., Hart, D. N. and Radford, K. J. (2006). Numerical and functional assessment of blood dendritic cells in prostate cancer patients. Prostate 66(2): 180-192. 

  23. Radford, K. J., Turtle, C. J., Kassianos, A. J., Vuckovic, S., Gardiner, D., Khalil, D., Taylor, K., Wright, S., Gill, D. and Hart, D. N. (2005). Immunoselection of functional CMRF-56+ blood dendritic cells from multiple myeloma patients for immunotherapy. J Immunother 28(4): 322-331. 

  24. Rice, R. R., Muirhead, A. N., Harrison, B. T., Kassianos, A. J., Sedlak, P. L., Maugeri, N. J., Goss, P. J., Davey, J. R., James, D. E. and Graham, M. W. (2005). Simple, robust strategies for generating DNA-directed RNA interference constructs. Methods Enzymol 392: 405-419.

1 Protocol published
Identification and Quantitation of Leukocyte Populations in Human Kidney Tissue by Multi-parameter Flow Cytometry
Inflammatory immune cells play direct pathological roles in cases of acute kidney injury (AKI) and chronic kidney disease (CKD). However, the identification and characterization of distinct populations of leukocytes in human kidney biopsies have ...
您可以切换至中文站点,以获得适用于中国用户的内容 中文站点
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.