Yan Wang Department of Plant Pathology , Nanjing Agriculture University, China
2 protocols

Yeqiang Xia Department of Plant Pathology , Nanjing Agriculture University, China, China,
1 protocol

Yuanpeng Xu Department of Plant Pathology, Nanjing Agriculture University, China, China,
1 protocol

Fan Liu Department of Plant Pathology, Nanjing Agriculture University, China, China,
1 protocol

Yuanchao Wang
  • Department of Plant Pathology , Nanjing Agriculture University, China
  • 2 Author merit

Education

PhD, Nanjing Agricultural University, China

Current position

Professor, College of Plant Protection, Nanjing Agricultural University, China

Publications

  1. Wang, Y., Xu, Y., Sun, Y., Wang, H., Qi, J., Wan, B., Ye, W., Lin, Y., Shao, Y., Dong, S., Tyler, B. M. and Wang, Y. (2018). Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection. Nature Communications 9(1): 594. 

  2. Wang, Y. and Wang, Y. (2018). Trick or Treat: Microbial Pathogens Evolved Apoplastic Effectors Modulating Plant Susceptibility to Infection. Mol Plant Microbe Interact 31(1): 6-12. 

  3. Yang, B., Wang, Q., Jing, M., Guo, B., Wu, J., Wang, H., Wang, Y., Lin, L., Wang, Y., Ye, W., Dong, S. and Wang, Y. (2017). Distinct regions of the Phytophthora essential effector Avh238 determine its function in cell death activation and plant immunity suppression. New Phytol 214(1): 361-375. 

  4. Ma, Z., Zhu, L., Song, T., Wang, Y., Zhang, Q., Xia, Y., Qiu, M., Lin, Y., Li, H., Kong, L., Fang, Y., Ye, W., Wang, Y., Dong, S., Zheng, X., Tyler, B. M. and Wang, Y. (2017). A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science 355(6326): 710-714. 

  5. Kong, L., Qiu, X., Kang, J., Wang, Y., Chen, H., Huang, J., Qiu, M., Zhao, Y., Kong, G., Ma, Z., Wang, Y., Ye, W., Dong, S., Ma, W. and Wang, Y. (2017). A Phytophthora Effector Manipulates Host Histone Acetylation and Reprograms Defense Gene Expression to Promote Infection. Curr Biol 27(7): 981-991. 

  6. Huang, J., Gu, L., Zhang, Y., Yan, T., Kong, G., Kong, L., Guo, B., Qiu, M., Wang, Y., Jing, M., Xing, W., Ye, W., Wu, Z., Zhang, Z., Zheng, X., Gijzen, M., Wang, Y. and Dong, S. (2017). An oomycete plant pathogen reprograms host pre-mRNA splicing to subvert immunity. Nat Commun 8(1): 2051. 

  7. Zhang, X., Zhai, C., Hua, C., Qiu, M., Hao, Y., Nie, P., Ye, W. and Wang, Y. (2016). PsHint1, associated with the G-protein alpha subunit PsGPA1, is required for the chemotaxis and pathogenicity of Phytophthora sojae. Mol Plant Pathol 17(2): 272-285. 

  8. Ye, W., Wang, Y., Shen, D., Li, D., Pu, T., Jiang, Z., Zhang, Z., Zheng, X., Tyler, B. M. and Wang, Y. (2016). Sequencing of the Litchi Downy Blight Pathogen Reveals It Is a Phytophthora Species With Downy Mildew-Like Characteristics. Mol Plant Microbe Interact 29(7): 573-583. 

  9. Song, T., Ma, Z., Shen, D., Li, Q., Li, W., Su, L., Ye, T., Zhang, M., Wang, Y. and Dou, D. (2016). An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters. PLOS Pathogens 11(12): e1005348. 

  10. Jing, M., Guo, B., Li, H., Yang, B., Wang, H., Kong, G., Zhao, Y., Xu, H., Wang, Y., Ye, W., Dong, S., Qiao, Y., Tyler, B. M., Ma, W. and Wang, Y. (2016). A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins. Nat Commun 7: 11685. 

  11. Dong, S. and Wang, Y. (2016). Nudix Effectors: A Common Weapon in the Arsenal of Plant Pathogens. PLoS Pathog 12(8): e1005704. 

  12. Sheng, Y., Wang, Y., Meijer, H. J., Yang, X., Hua, C., Ye, W., Tao, K., Liu, X., Govers, F. and Wang, Y. (2015). The heat shock transcription factor PsHSF1 of Phytophthora sojae is required for oxidative stress tolerance and detoxifying the plant oxidative burst. Environ Microbiol 17(4): 1351-1364. 

  13. Ma, Z., Song, T., Zhu, L., Ye, W., Wang, Y., Shao, Y., Dong, S., Zhang, Z., Dou, D., Zheng, X., Tyler, B. M. and Wang, Y. (2015). A Phytophthora sojae Glycoside Hydrolase 12 Protein Is a Major Virulence Factor during Soybean Infection and Is Recognized as a PAMP. Plant Cell 27(7): 2057-2072. 

  14. Kong, G., Zhao, Y., Jing, M., Huang, J., Yang, J., Xia, Y., Kong, L., Ye, W., Xiong, Q., Qiao, Y., Dong, S., Ma, W. and Wang, Y. (2015). The Activation of Phytophthora Effector Avr3b by Plant Cyclophilin is Required for the Nudix Hydrolase Activity of Avr3b. PLoS Pathog 11(8): e1005139. 

  15. Dong, Y., Li, Y., Zhao, M., Jing, M., Liu, X., Liu, M., Guo, X., Zhang, X., Chen, Y., Liu, Y., Liu, Y., Ye, W., Zhang, H., Wang, Y., Zheng, X., Wang, P. and Zhang, Z. (2015). Global genome and transcriptome analyses of Magnaporthe oryzae epidemic isolate 98-06 uncover novel effectors and pathogenicity-related genes, revealing gene gain and lose dynamics in genome evolution. PLoS Pathog 11(4): e1004801. 

  16. Xiong, Q., Ye, W., Choi, D., Wong, J., Qiao, Y., Tao, K., Wang, Y. and Ma, W. (2014). Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana. Mol Plant Microbe Interact 27(12): 1379-1389. 

  17. Wong, J., Gao, L., Yang, Y., Zhai, J., Arikit, S., Yu, Y., Duan, S., Chan, V., Xiong, Q., Yan, J., Li, S., Liu, R., Wang, Y., Tang, G., Meyers, B. C., Chen, X. and Ma, W. (2014). Roles of small RNAs in soybean defense against Phytophthora sojae infection. Plant J 79(6): 928-940. 

  18. Yin, W., Dong, S., Zhai, L., Lin, Y., Zheng, X. and Wang, Y. (2013). The Phytophthora sojae Avr1d gene encodes an RxLR-dEER effector with presence and absence polymorphisms among pathogen strains. Mol Plant Microbe Interact 26(8): 958-968. 

  19. Yang, X., Zhao, W., Hua, C., Zheng, X., Jing, M., Li, D., Govers, F., Meijer, H. J. and Wang, Y. (2013). Chemotaxis and oospore formation in Phytophthora sojae are controlled by G-protein-coupled receptors with a phosphatidylinositol phosphate kinase domain. Mol Microbiol 88(2): 382-394. 

  20. Song, T., Kale, S. D., Arredondo, F. D., Shen, D., Su, L., Liu, L., Wu, Y., Wang, Y., Dou, D. and Tyler, B. M. (2013). Two RxLR avirulence genes in Phytophthora sojae determine soybean Rps1k-mediated disease resistance. Mol Plant Microbe Interact 26(7): 711-720. 

  21. Lu, S., Chen, L., Tao, K., Sun, N., Wu, Y., Lu, X., Wang, Y. and Dou, D. (2013). Intracellular and extracellular phosphatidylinositol 3-phosphate produced by Phytophthora species is important for infection. Mol Plant 6(5): 1592-1604. 

  22. Hua, C., Meijer, H. J., de Keijzer, J., Zhao, W., Wang, Y. and Govers, F. (2013). GK4, a G-protein-coupled receptor with a phosphatidylinositol phosphate kinase domain in Phytophthora infestans, is involved in sporangia development and virulence. Mol Microbiol 88(2): 352-370. 

  23. Yu, X., Tang, J., Wang, Q., Ye, W., Tao, K., Duan, S., Lu, C., Yang, X., Dong, S., Zheng, X. and Wang, Y. (2012). The RxLR effector Avh241 from Phytophthora sojae requires plasma membrane localization to induce plant cell death. New Phytol 196(1): 247-260. 

  24. Dong, S., Kong, G., Qutob, D., Yu, X., Tang, J., Kang, J., Dai, T., Wang, H., Gijzen, M. and Wang, Y. (2012). The NLP toxin family in Phytophthora sojae includes rapidly evolving groups that lack necrosis-inducing activity. Mol Plant Microbe Interact 25(7): 896-909.


2 Protocols published
Preparation and Purification of Proteins Secreted from Phytophthora sojae
Authors:  Yeqiang Xia, Yan Wang and Yuanchao Wang, date: 10/20/2018, view: 515, Q&A: 0
Phytophthora sojae, the causal agent of soybean root and stem rot, is responsible for enormous economic losses in soybean production. P. sojae secrets various effectors to reprogram host immunity. The plant apoplastic space is a ...
Real-time PCR Analysis of PAMP-induced Marker Gene Expression in Nicotiana benthamiana
Authors:  Fan Liu, Yuanpeng Xu, Yan Wang and Yuanchao Wang, date: 10/05/2018, view: 488, Q&A: 0
Perception of pathogen-associated molecular patterns (PAMPs) often triggers various innate immune responses in plants. The transcriptional changes of defense-related genes are often used as a marker to assay PAMP-triggered plant immune response. ...
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.