Weimin Tan Department of Biological Sciences, Dartmouth College, USA, USA,
1 protocol

Yili Zhu Department of Biological Sciences, Dartmouth College, USA, USA,
1 protocol

Wei-Lih Lee
  • Professor, Department of Biological Sciences, Dartmouth College, USA
Research focus
  • microtubule regulation, dynein motor function, yeast cell biology
  • 1 Author merit


PhD, Johns Hopkins University, USA, 2001


  1. Zhu Y., An X., Tomaszewski A., Hepler P.K., W.-L. Lee. 2017. Microtubule-crosslinking activity of She1 ensures metaphase spindle stability for spindle positioning. Journal of Cell Biology, 216(9):2759-2775.
  2. Bezanilla M., Gladfelter A.S., Kovar D.R., W.-L. Lee. 2015. Cytoskeletal dynamics: a view from the membrane. Journal of Cell Biology, 209(3):329-37.
  3. Markus S.M., Omer S., Baranowski K., W.-L. Lee. 2015. Improved plasmids for fluorescent protein tagging of microtubules in Saccharomyces cerevisiae. Traffic, 16(7):773-86.
  4. Zhu Y., W.-L. Lee. 2014. The role of +TIPs in directional tip expansion. Molecular Microbiology, 94(3):486-9.
  5. Wadsworth P., W.-L. Lee. 2013. Microtubule motors: doin’ it without dynactin. Current Biology, 23(13):R563-5. 
  6. Markus S.M., Kalutkiewicz K.A., W.-L. Lee. 2012. She1-mediated inhibition of dynein motility along astral microtubules promotes polarized spindle movements. Current Biology, 22(23):2221-30. 
  7. Collins E.S., Balchand S.K., Faraci J.L., Wadsworth P., W.-L. Lee. 2012. Cell cycle-regulated cortical dynein/dynactin promotes symmetric cell division by differential pole motion in anaphase. Molecular Biology of the Cell, 23(17):3380-90.
  8. Markus S.M., Kalutkiewicz K.A., W.-L. Lee. 2012. Astral microtubule asymmetry provides directional cues for spindle positioning in budding yeast. Experimental Cell Research, 318(12):1400-6.
  9. Tang X.Y., Germain B.J., W.-L. Lee. 2012. A novel patch assembly domain in Num1 mediates dynein anchoring at the cortex during spindle positioning. Journal of Cell Biology, 196(6):743-56. 
  10. Markus S.M., W.-L. Lee. 2011. Microtubule-dependent path to the cell cortex for cytoplasmic dynein in mitotic spindle orientation. Bioarchitecture, 1(5):209-215. 
  11. Markus S.M., W.-L. Lee. 2011. Regulated offloading of cytoplasmic dynein from microtubule plus ends to the cortex. Developmental Cell, 20:639-651. 
  12. Markus S.M., Plevock K.M., Germain B.J., Punch J.J., Meaden C.W., W.-L. Lee. 2011. Quantitative analysis of Pac1/LIS1-mediated dynein targeting: implications for regulation of dynein activity in budding yeast. Cytoskeleton, 68:157-174. 
  13. Wadsworth P., W.-L. Lee, T. Murata, T.I. Baskin. 2011. Variations on theme: spindle assembly in diverse cells. Protoplasma, 248:439-46. 
  14. Ferenz N.P., Ma N., W.-L. Lee, and P. Wadsworth. 2010. Imaging protein dynamics in live mitotic cells. Methods, 51(2):193-196. 
  15. Tang X.Y., J.J. Punch, W.-L. Lee. 2009. A CAAX motif can compensate for the PH domain of Num1 for cortical dynein attachment. Cell Cycle, 8(19):3182-3190. 
  16. W.-L. Lee, P. Wadsworth. 2009. New spindle morphogenesis model by Dynein, Nudel, and the spindle matrix. Cell Research, 19(5):529-531. 
  17. Markus S.M., J.J. Punch, W.-L. Lee. 2009. Motor- and tail-dependent targeting of dynein to microtubule plus ends and the cell cortex. Current Biology, 19(3):196-205. 
  18. Vorvis, C., S.M. Markus, W.-L. Lee. 2008. Photoactivatable GFP tagging cassettes for protein-tracking studies in the budding yeast Saccharomyces cerevisiae. Yeast, 25:651-659. 
  19. Li, J., W.-L. Lee, and J.A. Cooper. 2005. NudEL targets dynein to microtubule ends through LIS1. Nature Cell Biology 7:686-690. 
  20. W.-L. Lee, M.A. Kaiser, and J.A. Cooper. 2005. The offloading model for dynein function: differential function of motor subunits. Journal of Cell Biology 168:201-207. 
  21. W.-L. Lee, J.R. Oberle, and J.A. Cooper. 2003. The role of the lissencephaly protein Pac1 during nuclear migration in budding yeast. Journal of Cell Biology 160:355-364.
1 Protocol published
Authors:  Yili Zhu, Weimin Tan and Wei-Lih Lee, date: 12/05/2018, view: 4431, Q&A: 0
In this protocol, we describe a simple microscopy-based method to assess the interaction of a microtubule-associated protein (MAP) with microtubules. The interaction between MAP and microtubules is typically assessed by a co-sedimentation assay, ...
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.