GuangQian Zhou 1 protocol

CuiPing Mo 1 protocol

ChongZhou Fang Lungene Technologies Co., Ltd, China, China,
1 protocol

JinQi Liao Shenzhen Key Laboratory for Anti-Ageing and Regenerative Medicine, Health Science Center, Shen Zhen University, China, China,
1 protocol

Yonglun Luo
  • Department of Biomedicine, Aarhus University, Denmark
  • 2 Author merit

Education

Ph.D in Medicine, Department of Biomedicine, Aarhus University, Denmark, 2012

Current Position

Associate Professor, Department of Biomedicine, Aarhus University, Denmark

Publications

  1. Lin, L., Bolund, L. and Luo, Y. (2016). Towards Personalized Regenerative Cell Therapy: Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells. Curr Stem Cell Res Ther 11(2): 122-130.
  2. Lin, L., Vad-Nielsen, J. and Luo, Y. (2016). CRISPR-mediated multiplexed genetic manipulation. Oncotarget. [Epub ahead of print]
  3. Xiong, K., Zhou, Y., Hyttel, P., Bolund, L., Freude, K. K. and Luo, Y. (2016). Generation of Induced pluripotent stem cells (iPSCs) stably expressing synergistic activation mediator (SAM). Stem Cell Res 17(3): 665-669.
  4. Zhou, Y., Al-Saaidi, R. A., Fernandez-Guerra, P., Freude, K. K., Olsen, R. K., Jensen, U. B., Gregersen, N., Hyttel, P., Bolund, L., Aagaard, L., Bross, P. and Luo, Y. (2016). Mitochondrial Spare Respiratory Capacity Is Negatively Correlated with Nuclear Reprogramming Efficiency. Stem Cells Dev. [Epub ahead of print]
  5. Cai, Y., Laustsen, A., Zhou, Y., Sun, C., Anderson, M. V., Li, S., Uldbjerg, N., Luo, Y., Jakobsen, M. R. and Mikkelsen, J. G. (2016). Targeted, homology-driven gene insertion in stem cells by ZFN-loaded 'all-in-one' lentiviral vectors. Elife 5.
  6. Vad-Nielsen, J., Lin, L., Bolund, L., Nielsen, A. L. and Luo, Y. (2016). Golden Gate Assembly of CRISPR gRNA expression array for simultaneously targeting multiple genes. Cell Mol Life Sci 73(22): 4315-4325.
  7. Zhou, Y., Liu, Y., Hussmann, D., Brogger, P., Al-Saaidi, R. A., Tan, S., Lin, L., Petersen, T. S., Zhou, G. Q., Bross, P., Aagaard, L., Klein, T., Ronn, S. G., Pedersen, H. D., Bolund, L., Nielsen, A. L., Sorensen, C. B. and Luo, Y. (2016). Enhanced genome editing in mammalian cells with a modified dual-fluorescent surrogate system. Cell Mol Life Sci 73(13): 2543-2563.
  8. Holm, I. E., Alstrup, A. K. and Luo, Y. (2016). Genetically modified pig models for neurodegenerative disorders. J Pathol 238(2): 267-287.
  9. Luo, Y., Blechingberg, J., Fernandes, A. M., Li, S., Fryland, T., Borglum, A. D., Bolund, L. and Nielsen, A. L. (2015). EWS and FUS bind a subset of transcribed genes encoding proteins enriched in RNA regulatory functions. BMC Genomics 16: 929.
  10. Brix, J., Zhou, Y. and Luo, Y. (2015). The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells. J Genet Genomics 42(12): 661-670.
  11. Kang, R., Zhou, Y., Tan, S., Zhou, G., Aagaard, L., Xie, L., Bunger, C., Bolund, L. and Luo, Y. (2015). Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Res Ther 6: 144.
  12. Wang, J., Luo, Y., Wang, K., Wang, Y., Zhang, X., Teng, H. and Sun, Z. (2015). Clock-controlled StAR's expression and corticosterone production contribute to the endotoxemia immune response. Chronobiol Int 32(3): 358-367.
  13. Luo, Y., Lin, L., Golas, M., Sørensen, C. and Bolund, L. (2015). Targeted Porcine Genome Engineering with TALENs. In: Li, X. Q., Donnelly, D. J. and Jensen, T. G. (eds). Somatic Genome Manipulation: Advances, Methods and Applications.
  14. Luo, Y., Lin, L., Bolund, L. and Sorensen, C. B. (2014). Efficient construction of rAAV-based gene targeting vectors by Golden Gate cloning. Biotechniques 56(5): 263-268.
  15. Kang, R., Luo, Y.,  Zou, L., Xie, L., Lysdahl, H., Jiang, X., Chen, C., Bolund, L., Chen, M., Besenbacher, F. and Bunger, C. (2014). Osteogenesis of human induced pluripotent stem cells derived mesenchymal stem cells on hydroxyapatite contained nanofibers. RSC Advances 4: 5734-5739.
  16. Lin, L., Luo, Y., Sorensen, P., Praetorius, H., Vajta, G., Callesen, H., Pribenszky, C., Bolund, L. and Kristensen, T. N. (2014). Effects of high hydrostatic pressure on genomic expression profiling of porcine parthenogenetic activated and cloned embryos. Reprod Fertil Dev 26(3): 469-484.
  17. Zou, L., Luo, Y., Chen, M., Wang, G., Ding, M., Petersen, C. C., Kang, R., Dagnaes-Hansen, F., Zeng, Y., Lv, N., Ma, Q., Le, D. Q. S., Besenbacher, F., Bolund, L., Jensen, T. G., Kjems, J., Pu, W. T. and Bünger, C. (2013). A simple method for deriving functional MSCs and applied for osteogenesis in 3D scaffolds. Sci Rep 3: 2243.
  18. Blechingberg, J., Luo, Y., Bolund, L., Damgaard, C. K. and Nielsen, A. L. (2012). Gene expression responses to FUS, EWS, and TAF15 reduction and stress granule sequestration analyses identifies FET-protein non-redundant functions. PLoS One 7(9): e46251.
  19. Zhang, J., Li, H., Teng, H., Zhang, T., Luo, Y., Zhao, M., Li, Y. Q. and Sun, Z. S. (2012). Regulation of peripheral clock to oscillation of substance P contributes to circadian inflammatory pain. Anesthesiology 117(1): 149-160.
  20. Luo, Y., Kofod-Olsen, E., Christensen, R., Sorensen, C. B. and Bolund, L. (2012). Targeted genome editing by recombinant adeno-associated virus (rAAV) vectors for generating genetically modified pigs. J Genet Genomics 39(6): 269-274.
  21. Luo, Y., Lin, L., Bolund, L., Jensen, T. G. and Sorensen, C. B. (2012). Genetically modified pigs for biomedical research. J Inherit Metab Dis 35(4): 695-713.
  22. Luo, Y., Bolund, L. and Sorensen, C. B. (2012). Pig gene knockout by rAAV-mediated homologous recombination: comparison of BRCA1 gene knockout efficiency in Yucatan and Gottingen fibroblasts with slightly different target sequences. Transgenic Res 21(3): 671-676.
  23. Gao, F., Luo, Y., Li, S., Li, J., Lin, L., Nielsen, A. L., Sorensen, C. B., Vajta, G., Wang, J., Zhang, X., Du, Y., Yang, H. and Bolund, L. (2011). Comparison of gene expression and genome-wide DNA methylation profiling between phenotypically normal cloned pigs and conventionally bred controls. PLoS One 6(10): e25901.
  24. Luo, Y., Bolund, L. and Sørensen, C. B. (2011). An improved PCR strategy for fast screening of specific and random integrations in rAAV-mediated gene targeted cell clones. BMC Research Notes 4(1): 246.
  25. Gao, F., Li, S., Lin, L., Li, J., Luo, Y., Zhang, X., Nielsen, A. L. and Bolund, L. (2011). DNA methylation in peripheral blood cells of pigs cloned by somatic cell nuclear transfer. Cell Reprogram 13(4): 307-314.
  26. Liu, Z., Luo, Y., Jeppesen, P. B., Gregersen, S. and Hermansen, K. (2011). Amino acid-induced gene expression profiling in clonal beta-cell line INS-1E cells. Diabetes Metab Res Rev 27(2): 120-176.
  27. Gao, F.,Luo, Y., Li, J., Liu, Y., Lin, L., Du, Y., Li, S., Yang, H., Vajta, G., Callesen, H., Bolund, L. and Sorensen, C. B. (2011). High efficiency of BRCA1 knockout using rAAV-mediated gene targeting: developing a pig model for breast cancer. Transgenic Res 20(5): 975-988.
  28. Luo, Y., Tian, W., Cai, L., Wang, Y., Zhang, J., Teng, H., Du, J. and Sun, Z. S. (2009). Expression profiling reveals a positive regulation by mPer2 on circadian rhythm of cytotoxicity receptors: Ly49C and Nkg2d. Chronobiol Int 26(8): 1514-1544.
  29. Zhu, X., Luo, Y., Wang, J. and Yang, H. (2008). Synthetic biology progress and application. International Journal of Genetics 31(4): 281-283.315-320.
2 Protocols published
One-step Derivation of Functional Mesenchymal Stem Cells from Human Pluripotent Stem Cells
Authors:  Yan Zhou, JinQi Liao, ChongZhou Fang, CuiPing Mo, GuangQian Zhou and Yonglun Luo, date: 11/20/2018, view: 238, Q&A: 0
Mesenchymal stem cells (MSCs) are invaluable cell sources for understanding stem cell biology and potential application in tissue engineering and regenerative medicine. The current issues of MSCs that demand to be further addressed are limited ...
A Golden Gate-based Protocol for Assembly of Multiplexed gRNA Expression Arrays for CRISPR/Cas9
The CRISPR (clustered regularly interspaced short palindromic repeats)-associated protein 9 (Cas9) has become the most broadly used and powerful tool for genome editing. Many applications of CRISPR-Cas9 require the delivery of multiple small guide ...
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.